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 1. Introduction

Since 2018, the Soil Science Society of Poland has selected 
a Soil of the Year, an initiative intended to raise public aware-
ness of the role and significance of soils. In 2024, the title was 
bestowed on organic soils. The 6th edition of the Polish Soil Clas-
sification (SGP 6, 2019) identified four types of organic soils 
(in Polish: gleby organiczne): peat soils (in Polish: gleby torfowe), 
mursh soils (in Polish: gleby murszowe), limnic soils (in Polish: 
gleby limnowe) and folisols (in Polish: gleby ściółkowe). As the 
name suggests, organic soils are made up of organic material 
that contains ≥ 12% organic carbon (C) if saturated with water 
for at least 30 consecutive days a year or ≥ 20% organic C if satu-
rated with water for < 30 consecutive days a year (Kabała et al., 
2019). A substantial accumulation of organic matter at the soil 
surface can stem from a high moisture content within the eco-
system and from specific weather conditions (low temperature, 
high precipitation), which slows down organic matter decom-
position (mineralisation). In the temperate climate zone, which 

 includes Poland, organic soil formation is mainly driven by wa-
ter gathered from surrounding areas, which prevents oxygen 
from reaching the soil material, thereby creating the anaerobic 
conditions necessary for a positive soil organic matter balance. 
In SGP 6 (2019), the soils that develop if these hypoxic conditions 
are maintained have been classified as peat and limnic soils. The 
weather-dependent aspect of organic soil formation, on the oth-
er hand, is particularly well illustrated by the folisols that form 
in mountainous areas.

As they occupy the lowermost parts of the landscape (the 
borderline between land and water), organic soils play a very 
important role in the water, C and nutrient cycles (Joosten and 
Clarke, 2002; Rydin and Jeglum, 2006; Oleszczuk et al., 2008; 
Kimmel and Mander, 2010; Maljanen et al., 2010; Page and 
Baird, 2016; Kasimir et al., 2018; Norberg et al., 2018; Harris et 
al., 2022). The accumulation of organic matter (mainly in the 
form of plant remnants) in peatlands is a long-term process de-
termined by climate, vegetation and the inundation processes 
that affect the edaphic factors in the catchment. Therefore, peat 
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Abstract

The Soil Science Society of Poland has selected organic soils (in Polish: gleby organiczne) as their 
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(in Polish: gleby ściółkowe). The estimated cover of organic soils in Poland ranges from 4 to 5% 
of the land surface, located mainly in closed depressions and river valleys; an exception are the 
folisols that mainly occur in mountain areas. Among organic soils, peat and mursh soils cover the 
largest area and are mainly used for agricultural purposes. Organic soils are considered the largest 
natural terrestrial reservoir of organic C, but disturbance to peatlands from climate change and 
human activities has impacted their C storage potential. In this review paper, we present (a) the 
concept of organic soils in Poland; (b) the classifi cation scheme for organic soils in Poland and their 
correlation with international classifi cation systems, such as the World Reference Base (WRB) and 
the NRCS Soil Taxonomy; (c) a review of the distribution, land use, threats and protection of organic 
soils in Poland; and (d) future research needs with regard to organic soils.
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deposits are treated as living natural archives; a record of local 
environmental changes (e.g. Tobolski, 2000; Urban, 2004; Borów-
ka et al., 2022; Okupny, 2023). Peatlands are unique in nature, 
different from both typical terrestrial and deepwater habitats, 
which is why they contribute to environmental diversity both in 
the geographical and biological sense. Thus, it comes as no sur-
prise that peatlands and organic soils have drawn the interest 
of specialists from various fields, including ecologists, hydrolo-
gists, paleogeographers, paleobotanists and soil scientists. After 
all, untangling the functioning of complex peatland ecosystems 
requires coordinated interdisciplinary efforts.

A high organic matter content is the defining aspect of or-
ganic soils, influencing their environmental role. Organic soils 
also exhibit high total porosity values (up to 94%) and are water 
saturated under natural conditions (before drainage) (Zawadz-
ki, 1970; Marcinek and Spychalski, 1987; Rezanezhad et al., 2016; 
Liu et al., 2020). In addition, as they contain substantial concen-
trations of biogenic elements, they are considered fertile and 
are widely used by farmers (Lucas, 1982; Everett, 1983; Ilnicki, 
2002). They are also highly labile and susceptible to transforma-
tion through changes in hydrographic conditions (e.g. Okruszko, 
1956, 1993; Marcinek, 1976; Marcinek and Spychalski, 1998; 
Oleszczuk et al., 2008, 2022; Leifeld et al., 2011; Krüger et al., 
2015; Zając et al., 2018; Leifeld et al., 2020; Lasota and Błońska, 
2021). The greatest threat to organic soils is posed by drainage, 
which triggers a cascade of changes in the soil matrix. Princi-
pally, increasing amounts of carbon dioxide (CO2) are released 
to the atmosphere from the microbial decomposition of organic 
matter, while nutrients also seep into surface and groundwaters 
leading to increased levels of eutrophication (e.g. Tiemeyer et 
al., 2007; Oleszczuk et al., 2008; Kalisz et al., 2010; Tiemeyer and 
Kahle, 2014; Oleszczuk et al., 2022; Kalisz and Łachacz, 2023; 
Łachacz et al., 2023). As such, the condition of organic soils has 
drawn widespread interest from scientists, land users and the 
general public. 

Organic soils in general, and the most common peat soils 
in particular, have long been of interest to humans. For centu-
ries, peat has been burnt as a fuel, employed as a raw material 
by various industries, and converted into compost and used to 
grow garden plants and tree seedlings (e.g. Ilnicki, 2002; Joosten 
and Clarke, 2002). However, organic soils have been mainly used 
as grassland, for which they must first be drained. In Poland, ap-
proximately 75–80% of the peatland area has been drained for 
agriculture (e.g. Marcinek, 1978; Okruszko, 1993). Drained peat 
soils undergo a series of pedogenic transformations that are re-
ferred to as the mursh-forming process (Okruszko, 1960, 1993; 
Okruszko and Ilnicki, 2003; Łachacz et al., 2023). Accordingly, 
the resultant soils are termed mursh soils (SGP 6 2019; Kabała 
et al., 2019).

Although limnic soils (developed from organic mud or gyt-
tja) cover a relatively small area of Poland, they are of particular 
interest. Gyttja soils are formed when lakes are rapidly drained, 
thereby exposing the lakebed (Łachacz and Nitkiewicz, 2021). 
Muddy soil forms from the addition of a silty mineral materi-
al deposited in river valleys and lake shores (Okruszko, 1969; 
Kalisz and Łachacz, 2008; Roj-Rojewski and Walasek, 2013). In 
river valley fen soils, muddy soils co-occur with alluvial soils of 

variable organic matter content (Kabała, 2022). Folisols cover 
a relatively small area of the country, mostly in the mountains, 
but they are important for the stability and functioning of those 
extreme environments. 

The aim of this paper is to describe organic soils in Poland, 
profile them with the current edition of the Polish Soil Classifica-
tion (SGP 6 2019), expound on the problems related to organic 
soil use and conservation, and finally propose directions for fur-
ther research. 

2. Organic soil studies in Poland

Interest in organic soils, especially peat soils, intensified in 
Poland in the second half of the 19th century due to the wide-
spread use of peat for heating purposes. At the same time, re-
ports of the agricultural use of organic soils, including peat soils, 
appeared in the scientific literature. Consequently, the term 
“mursh” (in Polish: mursz) emerged to describe drained and 
overdried peat soils (Strzemski, 1980). An important stage in the 
development of our knowledge of peatlands, including organic 
soils, was the research carried out in the interwar period in the 
current Belarusian part of the Polesie (Polesye) region, as part 
of preparations for land reclamation (i.e. drainage) and subse-
quent agricultural use of vast areas of peatland (Łachacz, 2024). 
This extensive research resulted in numerous publications and 
was summarised in a monograph by Kulczyński (1949), pub-
lished first in Polish and then in English. During this era of peat-
land study, modern methods (for the time), such as palynological 
and plant macro-remains analyses, were used and focused on 
peatland water supply, the stratigraphy of the peat deposits, and 
the origin and division of peatlands.

Research on organic soils continued after the Second World 
War, which was reflected in the development of a peat classifica-
tion scheme (Tołpa et al., 1967). Immediately after the war, there 
was a significant interest in peat deposits as an energy raw mate-
rial, and the geological inventory of peat deposits in Poland was 
developed. This inventory covered peatland areas > 1 ha, with at 
least 30 cm of peat from the surface down and containing over 
20% organic matter (Ilnicki, 2002). In this inventory, the use of 
organic soils for agricultural purposes, mainly as meadows and 
pastures, was taken into account. In the 1960s, the use of peat 
for heating purposes in Poland was completely abandoned, and 
peat soils were treated as agricultural land (Ilnicki, 2002). Dur-
ing this time, research also focused on the changes that organic 
soils undergo after drainage (e.g. Okruszko, 1956; Kowaliński, 
1964; Marcinek, 1976).

Globally, land users and researchers have drawn attention 
to the significant changes that occur in organic soils due to drain-
age and agricultural use (e.g. Pons, 1960; Lucas, 1982, Everett, 
1983; Ilnicki, 2002). These changes have been variously termed, 
for example, as secondary humification, secondary transforma-
tion or earthing (Grosse-Brauckmann et al., 1995; Łachacz and 
Kalisz, 2016, Łachacz et al., 2023). In Poland, the products (soil 
materials) of pedogenic transformations of originally wet organ-
ic materials were termed mursh (in Polish: mursz) (Miklaszew-
ski, 1930; Tomaszewski, 1950, 1958; Strzemski, 1980), which was 
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scientifically defined and described by Okruszko (1960, 1976), 
who used the term “muck” or “moorsh”, although the English 
notation “mursh” is currently used (Kabała et al., 2019). It should 
be noted that the notation “mursh” had already appeared in 
the English translation of soil units in SGP 1 (1956) and SGP 2 
(1959) and in Wondrausch (1963). Polish soil scientists have 
emphasised the evolutionary changes of shallow organic soils 
developed on sandy substrates (e.g. Rząsa, 1963; Mocek, 1978; 
Łachacz, 2001, Łabaz and Kabała, 2016; Łachacz et al., 2023; 
Łachacz and Załuski, 2023). An arenimurshic horizon (in Polish: 
arenimurszik) (SGP 6, 2019) is formed as a result of the miner-
alisation of soil organic matter and its amalgamation with the 
mineral sandy substrate. Depending on the organic C content, it 
is termed either semimurshic material (in Polish: murszowaty) 
or postmurshic material (in Polish: murszasty). 

The research on the transformation of drained peat soils, 
initiated in the 1950s, was carried out at the Institute for Land 
Reclamation and Grassland Farming in Falenty, the “Biebrza” 
Research Station and at all agricultural universities (Łachacz 
and Kalisz, 2016). The first stage of the research was summa-
rised in Okruszko (1960), which can be treated as a description 
of the general theory of the mursh-forming process. Other pa-
pers have addressed the problem of changes in water proper-
ties (e.g. Szuniewicz and Szymanowski, 1977; Okruszko, 1979; 
Szuniewicz, 1979; Gawlik, 1992; Piaścik and Łachacz, 1997), hu-
mic substances (e.g. Okruszko and Kozakiewicz, 1973; Walczyna, 
1974; Sapek A. and Sapek B., 1986; Sapek, B. and Sapek, A., 1987, 
1993; Wójciak, 2004), the transformations of iron (Fe), calcium 
(Ca) and aluminium (Al) compounds (Piaścik, 1977), as well as 
phosphorus (P) (Okruszko, 1964; Przesmycka, 1974; Ziółek, 2007; 
Becher et al., 2018, 2020; Debicka et al., 2021). Scientists have 
attempted to explain the phenomena related to the process of 
transformation of peat into mursh (the formation of a charac-
teristic grainy or granular structure) using micromorphological 
methods (Kowaliński, 1964; Drozd et al., 1987; Róg, 1991). Analy-
ses of the elements potentially available to plants were also im-
proved during this time (Okruszko and Walczyna, 1970; Sapek A. 
and Sapek, B., 1992, 1997). 

Research showed that drainage and agricultural use of 
organic soils leads to their degradation (Okruszko, 1956, 1993; 
Marcinek, 1976; Marcinek and Spychalski, 1998; Piaścik and 
Łachacz, 2001; Okruszko and Ilnicki, 2003; Ilnicki and Zeitz, 
2003). The mineralisation of soil organic matter resulted in a loss 
of organic matter and a decrease in the thickness of the organic 
horizon (Jurczuk, 2011; Glina et al. 2016c; Oleszczuk et al. 2022), 
i.e. peatland subsidence, and consequently, the soils were trans-
formed from organic soils to mineral soils, referred to in the lit-
erature as the “disappearance of peatlands” (Rząsa, 1963; Lipka, 
1978; Lipka et al., 2017; Łachacz, 2001; Łachacz et al., 2023). 

Since the 1990s, Polish soil science has been dominated by 
the idea that rational use and protection of organic soils is of crit-
ical importance. Scientific research conducted over many years 
has provided substantial data on the distribution and properties 
of these soils, both at the national (Żurek, 1987; Ilnicki and Żurek, 
1996; Dembek et al., 2000; Lipka, 2000; Ilnicki, 2002; Kotowski et 
al., 2017) and regional levels (e.g. Zawadzki, 1957; Rząsa, 1963; 
Mocek, 1978; Borowiec, 1990; Tobolski et al., 1997; Urban, 2004; 

Becher, 2013). Attention was also paid to those organic soils that 
cover a relatively small area of the country and yet constitute 
a natural phenomenon or interesting landscape element, such 
as organic carbonate soils (Zawadzki, 1957), lacustrine carbon-
ate soils (Uggla, 1976; Meller, 2006; Lemkowska and Sowiński, 
2018; Jarnuszewski et al., 2023), gyttja soils (Uggla, 1968; Mendyk 
et al., 2016; Markiewicz et al., 2017; Kruczkowska et al., 2021; 
Łachacz and Nitkiewicz, 2021) and organic soils in the moun-
tains (Skiba and Komornicki, 1983; Bogacz, 2005; Malawska et 
al., 2006; Skiba et al., 2011; Kabała et al., 2013; Drewnik et al., 
2018; Nicia et al., 2018). 

The primary studies on Polish folisols were conducted 
by Skiba (2006), Skiba et al. (1998, 2011, 2014), Drewnik et al. 
(2015), Kacprzak et al. (2006), Musielok et al. (2013), Kabała et al. 
(2013) and Telega (2022). Many of these authors found that cli-
mate, geomorphological conditions and plant communities can 
cause acidic epihumus (Oh) layers to form on any rock substrate 
(Kacprzak et al., 2006; Skiba, 2006). These studies were mostly 
focused in the Tatra Mountains, the Eastern Carpathians (Skiba 
et al., 1998, 2014) and the Sudetes (Skiba at al., 2011; Musielok 
et al., 2013; Kabała et al., 2013; Telega, 2022). Folisols have also 
been found on granite, sandstone, Carpathian flysch, rhyolites 
and limestone. The ecological and hydrological role of folisols 
in the natural environment has been emphasised (Kacprzak et 
al., 2006).

The use of new research methods significantly expanded 
the state of knowledge with regard to the processes that oc-
cur in organic soils (Łachacz et al., 2009; Oleszczuk et al., 2009; 
Gnatowski et al., 2010, 2022; Kalisz et al., 2010, 2015; Hewelke 
et al., 2016; Papierowska et al., 2018; Glina et al., 2019; Glina et 
al., 2021; Becher et al., 2022, 2023; Mencel et al., 2022; Kalisz and 
Łachacz, 2023). Currently, in Poland, as in other countries, con-
siderable attention has been paid to the environmental role and 
functions of organic soils. 

3. Crucial properties and functions of organic soils

Although peat soils cover a relatively small area, with peat 
accumulation rates of 0.5–1.0 mm yr−1 (Renou-Wilson et al., 
2019), they are crucial for organic C sequestration, water quality 
and retention, immobilisation of various compounds, the main-
tenance of biodiversity, and as habitats for various fauna and 
flora species (Joosten and Clarke, 2002). In addition, peatlands 
provide many ecosystem services, such as agricultural biomass 
production, a growing media for horticultural production, a fuel 
source for energy, as well as places for recreation and art (Kim-
mel and Mander, 2010). Peat soils are also so-called ecotone 
zones i.e. transitional sites between land and water ecosystems. 
They act as “the kidneys of the landscape” due to their ability to 
retain and bind various chemical compounds. Organic soils play 
a buffering role for excess nutrients that endanger surface and 
ground water quality, as well as adjacent soils. 

Natural water-saturated peatlands sequester CO2 from 
the atmosphere (in peat vegetation) and emit methane (CH4) 
(Maljanen et al., 2010), and thus play an important role in the 
regulation of the global climate. The global peatland C stock is 
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estimated at approximately 650 Gt, of which 85% is stored in 
northern hemisphere peatlands (Xu et al., 2018; Hugelius et 
al., 2020; Harris et al., 2022). The C stock in peatlands has been 
estimated to be equivalent to one-third of global soil organic C 
(Page and Baird, 2016). Drainage and use of peat soils increase 
soil aeration and transform peatlands from CO2 sequesters into 
net emitters (although CH4 emissions may decrease) (Maljanen 
et al., 2010; Frolking et al., 2011; Kasimir et al., 2018; Tuohy et 
al., 2023). Disturbance to peatlands from climate change and hu-
man activity affects their C storage potential. This leads to the 
loss of a significant part of their C stock as dissolved organic 
carbon (DOC) via fluvial pathways (Glina et al., 2022). Although 
the labile organic fraction constitutes a small proportion of soil 
organic matter (SOM), it is one of the most mobile and bioavail-
able forms (Ghani et al., 2013; Kalisz et al., 2015; Cao et al., 2017; 
Norberg et al., 2018) and can be indicative of the processes that 
control SOM accumulation and stabilisation (Glina et al., 2016a; 
Bojko et al., 2017; Kalisz et al., 2021). Organic matter is an im-
portant soil constituent that provides a variety of functions that 
influence plant growth, greenhouse gases (GHGs) emissions, and 
the physical and chemical properties of the soil (Smólczyński 
and Orzechowski, 2010a; Heller and Zeitz, 2012; Lehmann and 
Kleber, 2015; Kalisz and Łachacz, 2023). 

Natural peatlands are water “reservoirs” that can mitigate 
spring flooding and can remain resilient even during periods 
of drought. Organic soils retain water in the landscape and the 
outflow is well distributed over time, which is especially impor-
tant in river valleys (organic soils can mitigate floods). During 
drought periods, organic soils release water to the rivers and 
surrounding lands. The ability to retain water derives from an 
inherent low bulk density, as well as high total porosity and dis-
tribution of pore size classes (Szatyłowicz et al., 2007; Gnatowski 
et al., 2010; Hewelke et al., 2016), which also depend on the type 
of peat, degree of decomposition, degree of humification, drain-
age and transformation by mursh-forming process, as well as 
topsoil siltation (Smolczynski et al., 2021). The relationship be-
tween soil properties and water retention and conductivity have 
been well-described by pedotransfer functions (Gnatowski et al., 
2010; Szatyłowicz et al., 2007). In drained peat soils, the water 
retention function is diminished and the physical properties 
are changed. The topsoil of mursh is characterised by a small 
volume of macropores (range: 6% to 18%), and the average con-
tent of air pores is approximately 10% (Orzechowski et al., 2022; 
Smólczyński et al., 2016). Silted mursh organic soils are charac-
terised by a smaller volume of macropores and a larger volume 
of micropores (leads to reduced volume of mesopores and con-
sequently water availability to plants), which accounts for more 
than half of their total porosity. Some drained organic soils that 
are still able to maintain an ability to retain water may change 
their volume, which results in swelling and shrinking processes 
(when the water table fluctuates widely) (Oleszczuk et al., 2009). 
The diminished water retention abilities in organic soils are 
a consequence of increasing hydrophobicity in the drained top-
soil (Łachacz et al., 2009; Kalisz et al., 2015; Papierowska et al., 
2018; Szatyłowicz et al., 2024). Silted mursh materials are fre-
quently moderate or strongly hydrophobic, whereas peats that 
are not silted are very strongly or extremely hydrophobic. The 

hydrophobicity is related to the organic matter content, degree 
of humification, and the degree of organic soil siltation. In gen-
eral, hydrophobicity occurs in soils that contain more than 20% 
organic matter, although colluvial or alluvial admixtures in the 
organic mass may diminish its concentration (Orzechowski et 
al., 2013; Kalisz et al., 2015). 

Disturbance of water properties in organic soils also leads 
to the disturbance of N compounds. Mineralisation of organic 
matter releases inorganic N to the mursh (Tiemeyer et al., 2007), 
and thus increases the availability of N to the plants (Pauli et 
al., 2002). Mineralisation of nitrogenous compounds occurs both 
during the growing season and, more critically, outside of the 
growing season when it endangers groundwater quality. The 
amount of N released during the non-growing season in mursh 
soils has been shown to range from 5 to 9 mg·dm–3. A mitigating 
factor of N mineralisation is peatland siltation. Research car-
ried out by Smólczyński and Orzechowski (2010b) showed that 
smaller amounts of mineral N were found in peat layers under 
colluvial sediments than in mursh materials, which is particu-
larly important for alder peats as they are most vulnerable to 
these processes. 

Organic soils contain variable amounts of P. For example, 
fen peats contain approximately 0.5 g P kg–1, whereas mursh 
materials contain 1.0 to 2.4 g P kg–1 (Łachacz et al., 2023). The 
increase in P content after drainage, due to mursh formation, 
may lead to P dispersion, entailing the process of eutrophication 
(Meissner et al., 2008; Becher et al., 2020). Moreover, the high 
variability in redox conditions in both wet and drained peat soils 
has a significant effect on the forms and solubility of P (Becher 
at al., 2018). Moreover, P release as a result of drying and rewet-
ting of organic soils may limit the ability of natural, restored and 
constructed wetlands and streams to provide substantial eco-
system services. Along landscape flow paths, the released soil P 
may cause aquatic or semi-aquatic ecosystems to act as P sources 
rather than sinks, potentially contributing to harmful eutrophi-
cation in vulnerable downstream ecosystems (Kinsman-Costello 
at al., 2016). Peatlands may release P to adjacent ecosystems and 
become nutrient-poor systems for an unknown period. From an 
ecological restoration and target species point of view, the high 
availability of nutrients in highly decomposed peat soils is very 
important (Zak et al., 2014).

Riet Van de et al. (2013) reported that constant flooding of 
meadows on drained organic soils leads to the release of large 
amounts of compounds, especially P, into the groundwater, 
much more than in the case of mineral soils, driven by the high-
er content of Fe-bound P in peat formations. In turn, the release 
of P from organic soils is dependent on geochemical conditions. 
In organic soils that contain large amounts of Ca but are low in 
Fe, insoluble forms of Ca phosphates are formed, which in turn 
may limit the availability of P after drainage (Forsmann and 
Kjaergaard, 2014).

The content of other macro- and micro-elements in organic 
soils is also dependent on water conditions (Bieniek, 1988). An-
other factor that influences their concentration is the location of 
the soil in the landscape. Organic soils located at the edge of mo-
raine inland depressions have been shown to have the highest 
concentration of macro- and micro-elements, especially magne-
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sium (Mg), manganese (Mn), copper (Cu) and zinc (Zn), and lower 
located mursh soils – Ca, P and sodium (Na). The concentrations 
of Fe, Mn and P have been shown to be related to the fluctua-
tions of groundwater and the redox potential (Smólczynski et 
al., 2015). These soils are the first barrier to the biogens that may 
infiltrate nearby ecosystems and groundwaters (Sowiński et al., 
2004; Sowiński, 2016; Sowiński et al., 2016). 

The properties of folisols are related to the content and qual-
ity of the organic matter accumulated in the topsoil layer. Folik 
horizons are usually strongly acidic (pHH2O 3.1–4.1) (Drewnik et 
al., 2015), (pHH2O 3.6–4.8) (Skiba et al., 2011), (pHH2O 3.6–4.3) (Mu-
sielok et al., 2013). Even folisols developed on calcareous bedrock 
are acidic at pHH2O 5.8 (Kacprzak et al., 2006). Base saturation is 
usually low at 10–35% (Telega, 2022), only rarely exceeding 50% 
(Kabała et al., 2013). Nitrogen content ranges from 0.9 to 1.8%, 
with C:N ratios between 26 and 32 (Drewnik et al., 2015). 

The vegetation that grows on organic soils frequently con-
sists of rare and endangered species, so these ecosystems are 
very unique and important (Hedberg et al., 2014). Also, in many 
instances, these ecosystems are the only “shelter” or “refugium” 
for specific species (both fauna and flora) in the landscape 
(Sender et al., 2022). Moreover, organic soils with ongoing peat 
formation are the archives of environmental changes and if they 
remain undisturbed, may store critical information on historical 
climate change, vegetation cover and human activity (Słowiński 

et al., 2016; Dobrowolski et al., 2019; Kruczkowska et al., 2020; 
Mirosław-Grabowska et al., 2020; Magiera et al., 2021; Okupny 
and Pawłowski, 2021; Petera-Zganiacz et al., 2022). 

4. Classification of organic soils in Poland 

The specific properties of organic soils described above (of 
which the most important are the high organic C content, and 
low bulk density and high porosity values) distinguish them 
from mineral soils. In SGP 6 (2019), organic soils are defined 
as organic materials (containing 12% organic C if saturated 
with water for ≥30 consecutive days in most years, or containing 
≥20% organic C if saturated with water for <30 days) either: a) 
starting ≥ 30 cm from the soil surface and having within ≥60 cm 
from the soil surface combined thickness of ≥30 cm; or b) start-
ing at the soil surface and with a thickness of ≥10 cm, directly 
overlying continuous rock or coarse fragments the interstices 
of which are filled with organic material to a depth of ≥30 cm 
from the soil surface. Therefore, the current approach to the 
classification of organic soils is based on specific quantitative 
parameters (Table 1). However, both SGP 1 (1956) and SGP 2 
(1959) reflected the complexity and diversity of environmen-
tal conditions and soil genesis. In sections 4 and 5 of this re-
view paper, the Polish and English soil units used in successive 

Table 1
General characteristics of soil materials (excluding litter materials) forming organic soils according to SGP 6 (2019)

Specifi cation Peat Gyttja Mud Mursh

fi bric hemic sapric organic calcareous meadow 
limestone
(marl/chalk)

lacustrine telmatic 

Corg. (%) ≥12 ≥12 ≥12 ≥12 ≥12 <12 ≥12 12–25 ≥12

CaCO3 (%) * * * <20 ≥20 ≥20 * * *

Degree of 
decomposition
(%)
von Post 

<33
H1–H3

33–66
H4–H6

>66
H7–H10

– – – >66
H7–H10

>66
H7–H10

–**

Elasticity –*** –*** – + (+) – – – –

Coprolites – – (+) + + – – – –

Addition 
of clastic
material

small small various up 
to more 
than 70% 

very 
small 

small small various up 
to more 
than 70%

various up 
to more 
than 70%

various up 
to more 
than 70%

Colour 
(general) 

yellow 
to brown 

different 
shades 
of brown 

brown 
to black 

greenish, 
generally 
light  

whitish, 
generally 
light 

whitish, 
generally 
light 

blackish blackish different 
shades 
of brown 
to black 

Explanations: – – absent; + – present; (+) – present in smaller extend or only in some kinds of materials; * – some kinds of peats as well as mud and mursh 
materials have substantial addition of calcium carbonate (therefore are termed calcareous); ** – mursh by defi nition is strongly decomposed (sapric), 
however this feature is not determined by von Post method caused by normally dry/fresh conditions in the fi eld; *** – some kinds of peats, especially 
fi bric and hemic ones display specifi c elasticity caused by the presence of plant fi bres. However, this elasticity differs from that displayed by organic 
and some calcareous gyttja materials
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 versions of SGP are cited in the form they were written. In the 
described soil classifications, organic soils were associated with 
the hydromorphic soil type (in Polish: gleby bagienne), with the 
following soil subtypes distinguished: Gley soils (in Polish: gle-
by glejowe zabagniane), peat soils (in Polish: gleby torfowe) and 
murshic soils (in Polish: gleby murszowe). While only peat soils 
and murshic soils would probably meet the current criteria for 
organic soils, this is difficult to assess because both the early 
classification schemes (SGP 1 and SGP 2) did not clearly present 
defined quantitative criteria, especially in relation to the or-
ganic C content and the minimum thickness of organic materi-
als. Within the peat subtypes, the following soil units were dis-
tinguished: Peat soils developed from fen peatlands (in Polish: 
gleby torfowe wytworzone z torfów torfowisk niskich), peat soils 
developed from transitional peatlands (in Polish: gleby tor-
fowe wytworzone z torfów torfowisk przejściowych) and peat 
soils developed from raised peatlands (in Polish: gleby torfowe 
 wytworzone z torfów torfowisk wysokich). 

In SGP 3 (1974), hydromorphic soils were moved to a high-
er classification unit – class. Within this unit, two soil types 
were distinguished: Peat soils and mud soils (in Polish: gleby 
mułowe). The latter were described as soils that contain a sig-
nificant organic matter proportion that was mostly well hu-
mified. A separate group, the so-called lake gyttja (in Polish: 
gytja jeziorna), was distinguished among the muds of limnetic 
origin. 

In regard to the classification of peat soils, a minimum 
thickness of peat material (25 cm) was also introduced. More-
over, characteristic peat-forming plant species and soil pH 
values were provided for the individual soil subtypes. The 3rd 
edition (SGP 3) also introduced a new class of post-hydromor-
phic soils (in Polish: gleby pobagienne): Murshic soils and black 
earths (in Polish: czarne ziemie). Of the soils described above, 
only murshic soils, which form as a result of the mursh-form-
ing process (the process of physical and chemical transforma-
tion of organic materials that occurs after their dehydration) of 
peat or mud materials, could be considered as organic soils. 

The 4th edition (SGP 4, 1989) was similar to the previous 
versions and was based on environmental (qualitative) crite-
ria. However, for the first time, diagnostic horizons were in-
troduced, including histic, which consisted of organic material, 
such as “peat, mud, gyttja or organic mursh”, which contained 
at least 20% organic matter (at least 12% organic C content) 
and no clay, or at least 30% organic matter (18% organic C 
content) when the clay content was > 50% . When the thick-
ness of this horizon was > 30 cm, the soil was classified as an 
organic soil. These soils were merged in a division (in Polish: 
dział) of hydrogenic soils (in Polish: gleby hydrogeniczne). Peat 
soils and mud soils were assigned to the order (in Polish: rząd) 
bog soils (in Polish: gleby bagienne), while murshic soils were 
assigned as a separate soil type to the order post-bog soils (in 
Polish: gleby pobagienne). In SGP 4, a new type of organic soil 
was introduced – earth-covered murshic soils (in Polish: gleby 
namurszowe); soils where the surface layer (10–30 cm in thick-
ness) was composed of mineral or mineral-organic materials of 
alluvial, colluvial or anthropogenic origin, which directly over-
lay peat or mursh materials. It should be noted that the general 

description of organic soil types and subtypes in this edition 
was very detailed, including examples of soil profile morphol-
ogy, the typical development conditions and some specific soil 
parameters (i.e. pH and soil structure). 

In SGP 5 (2011), several important changes were introduced 
to the classification of organic soils. The previously derived cri-
teria were replaced with those adopted from the WRB classifica-
tion (IUSS Working Group WRB, 2006) and NRCS Soil Taxonomy 
(1999). Now, the classification of organic soils was based not on 
the general soil formation processes of organic materials and 
their transformation after drainage, but instead on their prop-
erties, i.e. morphology of the soil profile, the degree of peat de-
composition and presence of mineral, gyttja or mud layers in the 
control section of soil profile to a depth of 130 cm. Moreover, the 
diagnostic soil materials (sapric, hemic, fibric, limnic) and a list 
of diagnostic organic soil horizons were supplemented by folic 
and murshic. 

According to SGP 5 (2011), organic material should ful-
fil the following criteria: 1) contain at least 12–18% organic C 
(dependent on the clay content) if saturated with water for ≥ 30 
consecutive days in most years, or artificially drained; 2) contain 
≥ 20% organic C if saturated with water for <30 consecutive days 
in most years. A completely new approach included the intro-
duction of a control profile of organic soils with a thickness of 
130 cm, which was divided into three sections: an upper sec-
tion (0–40 cm), a middle section (40–100 cm) and a lower sec-
tion (100–130 cm) was introduced. The middle section equated 
to the main soil layer because its nature and properties deter-
mined the soil type and subtype. The soil material in the upper 
and middle sections formed the basis to distinguish soil types 
and subtypes, while the middle and lower sections were used 
to distinguish the soil subtypes only. Organic soils were com-
posed of organic materials of ≥ 40 cm thickness, and the only 
exception was when organic materials lay directly on solid 
rock or rock fragments (then the minimum thickness was set 
at 10 cm). In the order organic soils, the following soil types 
were distinguished: fibric peat soils (in Polish: gleby torfowe 
fibrowe), hemic peat soils (in Polish: gleby torfowe hemowe), 
sapric peat soils (in Polish: gleby torfowe saprowe), organic foli-
sols (in Polish: gleby organiczne ściółkowe), limnic organic soils 
(in Polish: gleby organiczne limnowe) and murshic soils. The 
peat soil types denoted the degree of peat decomposition that 
prevailed in the soil profile – fibric peat (slightly decomposed 
peat), hemic peat (moderately decomposed peat) and sapric 
peat (strongly decomposed peat). This was a significant change 
compared to previous soil classifications, which were based on 
the ecological type of the peatland. 

The current edition of Polish Soil Classification (SGP 6, 
2019) continued the important decision to correlate the re-
quirements for diagnostic horizons and materials with the 
WRB classification (IUSS Working Group WRB, 2015). The gen-
eral classification criteria for organic soils were described at 
the beginning of this section. Organic soils (as defined in SGP 
5) were merged as a separate order (soils developed from or-
ganic material with a histik/murszik/folik horizon of ≥ 30 cm or 
10 cm thickness), within which the following four types were 
distinguished: Murshic soils, peat soils, limnic soils and folisols. 
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Detailed classification criteria of the organic soil types and the 
numerous respective subtypes with their most common WRB 
equivalents are presented in the next section.

5.  Types of organic soils in Polish Soil Classification 
(SGP 6, 2019)

5.1. Peat soils

In Poland, peat soils (in Polish: gleby torfowe) can be consid-
ered as the most important soil type among organic soils, given 
their land cover, their ongoing accumulation of organic matter, 
and the large stocks of organic C sequestered within. They con-
sist mainly of indigenous plant remnants that have accumulated 
in situ. SOM starts to accumulate when microbial decomposition 
of plant matter is halted or slowed down due to limited oxygen 
availability in water-saturated sites. Organic soils have a posi-
tive organic matter balance in natural conditions (i.e. not sub-
jected to artificial drainage). Peat soil contains both plant detri-
tus (with preserved tissue structure) and humic substances, the 
latter generated by the decomposition of the former. Depending 
on the ratio between the main components, peat materials can 
be classified as fibric, hemic or sapric. The ‘degree of peat de-
composition’ (humification) is a metric that describes the pro-
portion of amorphous humus in relation to the total peat mass. 
The decomposition of plant debris during its accumulation (pri-
mary decomposition) should be distinguished from the second-
ary decomposition that occurs after the peat has been drained 
(the mursh-forming process). Humification affects the diameter 
and geometry of soil pores and is thus a major determinant of 
soil physical properties (such as water holding capacity and per-
meability). In a sense, the measure of peat decomposition corre-
sponds to grain size distribution in mineral soils. The presence 
of plant tissues shapes the rheological properties and bearing 
capacity of peat soils. Another determinant of peat soil param-
eters is the presence of allochthonous mineral soil material (i.e. 
the degree of siltation). 

Organic soils can be found in various physiographic posi-
tions, which influence the water supply. Peat soils usually occur 
in depression landforms (basins), with water from neighbouring 
areas flowing in and pooling within, but they can also be found 
on plains with limited groundwater outflow. Peatlands occur in 
the depressions that are typical of young-glacial landscapes, in 
river valleys (common for old-glacial landscapes), and on the 
slopes of foothills. Spring-fed fens are a unique case in that they 
are supplied with surfacing groundwater. With a large inflow 
of pressure-ejected (artesian) water, spring-fed fens can have 
a convex (dome fens) or hanging (slope fens) shape. Some raised 
bogs (mountain or coastal, Atlantic type) can also produce con-
vex landforms. 

Traditionally, peatlands have been divided into fens, transi-
tional and raised bogs, according to the water source, nutrient 
status and morphology of the peat deposit (Kulczyński, 1949). 
More detailed classifications based on the geobotanical features 
of the peat, namely the subfossil peat-forming plant commu-
nities, were elaborated by Tołpa et al. (1967). In SGP 6 (2019), 

a new non-hierarchical unit of soil classification was intro-
duced, namely variety. Based on the dominant peat in the upper 
layer (0–50 cm), the following varieties of peat soils were distin-
guished: raised, transitional and fen peatlands, which were fur-
ther subdivided into low-moss peats, sedge peats, reed peats and 
alder forest peats. The water-supply classification used water 
origin, chemical composition, oxygenation and mobility in the 
landscape to disaggregate organic soils as ombrogenic, soligenic, 
fluviogenic, basin and hanging soils. Peat soils, such as soligenic-
fluviogenic, are often fed by mixed water sources. 

With the exception of the murshic peat soil subtype, peat 
soils are overgrown with peat-forming vegetation. The ground-
water level is close to the surface all year round, or at least for 
30 consecutive days, which ensures that the soil is fully water-
saturated and drives the peat-forming process. The large pro-
portion of water-filled pores (70–95% vol.) and the organic soil 
mass (plant fibres) ensure that the surface of peat soil act like 
a sponge, which can deform under the weight of a person, and 
the resultant footprint immediately fills with water. Drainage of 
peat soils results in the development of a > 30 cm thick murszik 
horizon, thus prompting the transition of these soils to the mur-
shic type. 

In SGP 6 (2019), seven sub-types are defined based on the 
diagnostic materials and layers present in the soil profile, and 
the thickness of the layers: 
a) Earth-covered peat soils (in Polish: gleby natorfowe).
 The organic soil is covered with a layer of mineral sediment 

of at least 10 cm thick. The sediment may be of colluvial, 
fluvial, aeolian and slope (in mountainous areas) origin. In 
some cases, this mineral material is deliberately deposited 
as an amelioration practice. The underlying layer is made 
up of fibric, hemic or sapric peat. Earth-covered peat soils 
usually form narrow transition zones (ecotones) on the bor-
ders of peatlands. The surface mineral sediment partially 
shields the underlying peat from the air and slows down 
decomposition.

b) Fibric peat soils (Fig. 1b) (in Polish: gleby torfowe fibrowe). 
 Fibric peat dominates the peat layer to a depth of 100 cm 

(or comprises the entire profile if it does not reach a depth 
of 100 cm). The underlying layer can be hemic, sapric 
or mineral. These soils can often be found in natural (und-
rained) habitats.

c) Hemic peat soils (Fig. 1a) (in Polish: gleby torfowe hemowe).
 Hemic peat dominates the peat layer to a depth of 100 cm 

(or comprises the entire profile if it does not reach a depth of 
100 cm). In Poland, hemic peat soils cover large complexes 
of lacustrine fens, lakeside peatlands and valley peatlands. 

d) Sapric peat soils (in Polish: gleby torfowe saprowe).
 Sapric peat dominates the peat layer to a depth of 100 cm 

(or comprises the entire profile if it does not reach a depth 
of 100 cm). It often forms shallow peat soil profiles. 

e) Murshic peat soils (in Polish: gleby torfowe murszowe).
 The surface layer of the profile contains a murszik horizon 

of < 30 cm, which is indicative that the mursh-forming proc-
ess is at an early stage. Deeper fibric, hemic or sapric peats 
occur and comprise the entire profile or are underlain by 
mineral formations.
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f) Gyttja peat soils (in Polish: gleby torfowe gytiowe). 
 Layer (layers) of gyttja with a combined thickness of at least 

30 cm is (are) present to a depth of 100 cm in a soil profile 
that is composed of fibric, hemic or sapric peat. These soils 
occur in eutrophic lakes where peat-forming plants have 
entered the final stage of terrestrialisation, often in the 
form of a floating mat. Some fibric gyttja peat soils meet the 
criteria of the floatic principal qualifier under WRB (2022). 

g) Muddy peat soils (in Polish: gleby torfowe mułowe). 
 A layer (or layers) of mud with a combined thickness of at 

least 30 cm is (are) present to a depth of 100 cm in a soil 
profile composed of peat. Soils of this type are found in the 
valleys of larger rivers with a well-preserved natural water 
regime.
In general, peat soils according to SGP 6 (2019) belong to 

the Histosol soil reference group in the WRB classification (IUSS 
Working Group WRB, 2022), and the order Histosols in the Soil 
Taxonomy scheme (Soil Survey Staff, 2022), although shallow 
peat soils (from 30 to < 40 cm of peat material) might be classi-
fied as Histic Gleysols and Humaquepts. 

5.2. Limnic soils

Soils developed from the organic materials deposited in 
water environments were recognised for the first time in SGP 
3 (1974). As described in section 4, these soils, called mud soils 
(in Polish: gleby mułowe), were distinguished as one of two 

types: together with peat soils (in Polish: gleby torfowe) and 
within the class bog soils (in Polish: gleby bagienne). The mud 
soil type (in Polish: gleby mułowe) included three subtypes: 
proper mud soils (in Polish: gleby mułowe właściwe), mud-gyt-
tja soils (in Polish: gleby mułowo-gytiowe) and peat-mud soils 
(in Polish: gleby torfowo-mułowe). Since SGP 3, these soils have 
been recognised by Polish soil scientists with some changes in 
their systematic position. 

In SGP 4 (1989), new hierarchical units were introduced 
into the classification. Mud soil type was now present within 
the order bog soils (in Polish: gleby bagienne), becoming part of 
the hydrogenic soil division. As with the previous edition, three 
subtypes were distinguished: proper mud soils (in Polish: gle-
by mułowe właściwe), peat-mud soils (in Polish: gleby torfowo-
mułowe) and gyttja soils (in Polish: gleby gytiowe), depending on 
the character of the organic material. 

SGP 5 (2011) brought about substantial changes as it was 
more correlated to the WRB and Soil Taxonomy schemes (see 
section 4). In regard to soils developed from various organic 
sediments accumulated under water, diagnostic organic lim-
nic materials were listed, which included gyttja, diatomaceous 
earth, lacustrine marl, lacustrine chalk and muds. Neverthe-
less, strict, unambiguous criteria were not presented, which 
resulted in some problems with the correct identification of 
these materials, for example, a type of limnic soils (in Polish: 
gleby limnowe) was placed within the order organic soils. Once 
again, three subtypes of limnic soils were presented. However, 

Fig. 1. Organic soils of Poland: (a) hemic peat soil (SGP: gleba torfowa hemowa) – WRB: Drainic Hemic Histosol – 
Olsztyn Lakeland; (b) fibric peat soil (SGP: gleba torfowa fibrowa) – WRB: Drainic Hemic Histosol – Stołowe Mountains; 
(c) gyttja soil (SGP: gleba gytiowa) – WRB: Sapric Histosol (Limnic) – Mrągowo Lakeland; (d) muddy soil (SGP: gleba 
mułowa) – WRB: Sapric Histosol (Limnic) – Chełmno Lakeland. Abbreviations: SGP – Polish Soil Classification (System-
atyka gleb Polski, 2019), WRB – World Reference Base for Soil Resources (IUSS Working Group WRB, 2022)
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 different (in comparison to previous SGP editions) features 
were taken into account when their affiliation was determined 
and this was reflected in their nomenclature: typical limnic 
soils, hemi-limnic soils and calcareous limnic soils (in Polish: 
gleba limnowa typowa, gleba hemowo-limnowa and gleba 
węglanowo-limnowa, respectively) (Świtoniak et al., 2016). 

In SGP 6 (2019), a list of well-defined diagnostic horizons 
with limnic materials was presented, which referred to the tra-
ditional national division of such sediments, as well as to the 
findings of researchers who had examined specific soils that 
developed from these materials (e.g. Kalisz and Łachacz, 2009; 
Długosz et al., 2018; Łachacz and Nitkiewicz, 2021; Łachacz et 
al., 2023)., Five subtypes were recognised within limnic soils: 
a) Gyttja soils (Fig. 1c) (in Polish: gleby gytiowe).
 Gyttja is the dominant component of the soil organic mate-

rial.
b) Muddy soils (Fig. 1d) (in Polish: gleby mułowe).
 Organic mud is the dominant component of the soil organic 

material.
c) Subaquatic limnic soils (in Polish: gleby limnowe pod-

wodne).
 The soil surface is permanently covered with 10–150 cm 

of water (outside periods of flooding and drought).
d) Peaty limnic soils (in Polish: gleby limnowe torfowe).
 A layer (or layers/interlayers) of peat with a combined 

thickness of at least 30 cm is (are) present to a depth 
of 100 cm.

e) Murshic limnic soils (in Polish: gleby limnowe murszowe). 
 A murszik diagnostic horizon of < 30 cm thick is present. 

In practice, as both gyttja soil and muddy soil subtypes are 
“principal” subtypes (Kabała et al., 2019), the name “limnowa” is 
replaced with one of them, e.g. the soil developed from organic 
mud with a 20 cm thick murshik horizon would then be called 
murshic muddy soil (in Polish: gleba mułowa murszowa). 

The nearest equivalents to gleby limnowe in the WRB clas-
sification (IUSS Working Group WRB, 2022) are Sapric Histosols 
(Limnic) for gyttja soils, Sapric Histosols (Fluvic/Limnic) for 
muddy soils, Subaquatic Histosols (Limnic) for subaquatic lim-
nic soils Histosols (Limnic) for peaty limnic soils and Murshic 
Histosols (Limnic) for murshic limnic soils. In regard to the Soil 
Taxonomy classification (Soil Survey Staff, 2022), these equiva-
lents are Sapric/Typic Haplowassists for the subaquatic limnic 
soils and Limnic Haplosapristrs/Haplohemists for the remainder 
of the subtypes defined within SGP. Due to the different soil or-
ganic C threshold contents for organic material employed in SGP 
(compared to WRB and Soil Taxonomy), Polish organic limnic 
soils are commonly classified as Gleysols (Limnic), often with 
humic (hyperhumic) or mulmic qualifiers, and as Histic/Typic 
Humaquepts, respectively. 

5.3. Murshic soils

The murshic soils (in Polish: gleby murszowe) in SGP 1 
(1956) and SGP 2 (1959) were described as a subtype within 
the post-hydromorphic soil type (in Polish: gleby pobagienne). 
However, since SGP 3 (1974) and up to SGP 6 (2019), these soils 
have been described as a separate type. Murshic soils have 

developed from organic materials (peat, gyttja, mud) because 
of their permanent artificial or natural drainage systems and 
from pedogenic transformation. As a result of these proc-
esses, a surface (diagnostic) murszik horizon is formed, with 
a minimum thickness of 30 cm. The murszik horizon consists 
of organic materials that are characterised by the presence of 
a pedogenic structure (grainy or granular in most cases), and 
increased organic matter humification compared to the par-
ent organic material (peat or limnic materials). When drained 
for long periods, vertical cracks may appear within the profile. 
Periodic drying and the inherent characteristics of the murszik 
material mainly determine the functional properties of mur-
shic soils and distinguish them from other organic soils. The 
morphology and properties of organic materials that occur in 
the soil profile under the mursh layer are the main criteria 
used to distinguish the murshic soil subtypes. In SGP 6 (2019), 
the following murshic soil subtypes are included:
a) Earth-covered murshic soils (in Polish: gleby namurszowe).
 The murszik horizon is covered with mineral material 

of ≥10 cm thickness.
b) Fibric murshic soils (in Polish: gleby murszowe fibrowe). 
 Slightly decomposed peat dominates, and underlies the 

murszik horizon to a depth of 100 cm (or the entire layer 
of underlying peat if it does not reach a depth of 100 cm).

c) Hemic murshic soils (Fig. 2b) (in Polish: gleby murszowe 
 hemowe).

 Moderately decomposed peat dominates, and underlies 
the murszik horizon to a depth of 100 cm (or the entire layer 
of underlying peat if it does not reach a depth of 100 cm).

d) Sapric murshic soils (in Polish: gleby murszowe saprowe).
 Strongly decomposed peat dominates, and underlies 

the murszik horizon to a depth of 100 cm (or the entire layer 
of underlying peat if it does not reach a depth of 100 cm).

e) Gyttja murshic soils (in Polish: gleby murszowe gytiowe).
 A layer or layers of gyttja with a total thickness of ≥ 30 cm to 

a depth of 100 cm.
f) Muddy murshic soils (in Polish: gleby murszowe mułowe).
 A layer or layers of mud with a total thickness of ≥ 30 cm to 

a depth of 100 cm.
g) Thin murshic soils (Fig. 2a) (in Polish: gleby murszowe 

płytkie). 
 The total thickness of organic materials is ≤ 50 cm.

The most important equivalents of murshic soils in the WRB 
classification (IUSS Working Group WRB, 2022) are Murshic 
Histosols (if the thickness of the organic layer is at least 40 cm) 
or Histic Gleysols (Drainic) (if the thickness of the organic layer 
is < 40 cm). When the murshic material contains 8–20% organic 
C and might fulfil the criteria for mulmic material, then a mul-
mic supplementary qualifier may be added to Histosols or Gley-
sols. In the Soil Taxonomy classification (Soil Survey Staff, 2022), 
the most common equivalent of murshic soils are Histosols and 
Histic Humaquepts. 

5.4. Folisols

In SGP 6 (2019), folisols (in Polish: gleby ściółkowe) are 
listed within the order organic soils. Folisoils are composed 
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of organic material derived from litter (leaves, wood frag-
ments, bark, seeds and animal detritus) at least 10 cm thick 
when lying directly on solid rock, or at least 30 cm thick when 
lying on weathered rocks or in the spaces between rock frag-
ments. Folisols have a folik horizon with > 20% organic C that 
has accumulated under oxygen-rich conditions. The litter ma-
terial is saturated with water for < 30 days. Folisols encompass 
four subtypes: 
a) Typical folisols (in Polish: gleby ściółkowe typowe) with 

an organic layer at least 30 cm thick that covers the mineral 
horizon, not overlying solid rock or coarse-skeletal mate-
rial. 

b) Rocky folisols (Fig. 2c) (in Polish: gleby ściółkowe skaliste) 
with an organic layer at least 10 cm thick overlying solid 
carbonate-free rock. 

c) Debris folisols (Fig. 2d) (in Polish: gleby ściółkowe rumos-
zowe) with an organic layer at least 30 cm thick within 
carbonate-free coarse-skeletal material that fills the spaces 
between rock fragments and on the surface.

d) Calcareous folisols (in Polish: gleby ściółkowe rędzinowe), 
where the organic material covers solid carbonate rock 
or fills spaces with carbonate coarse-skeletal material. 
Folisols originate from transported and accumulated or-

ganic material and windthrows (Bochter and Zech, 1985). The 
resultant deadwood layers serve as an important source of C 
and nutrients (Maser and Trappe, 1984). Some organic layers 
can exceed 40 cm in thickness (Skiba et al., 2011; Kabała et 

al., 2013). In addition, soils that consist of organic matter that 
fills the empty spaces within slope cover are considered foli-
sols (Kacprzak et al., 2006; Skiba et al., 2011). Here, the slow-
ly decomposing litter is carried by water deep into cracks in 
the rocks, and accumulates over time (Skiba and Komornicki, 
1983; Kacprzak et al., 2006). Organic matter content is one of 
the most important drivers of plant expansion (encroachment) 
over coarse-grain parent material (Kabała et al., 2013). 

Folisols, which mainly form under specific conditions 
in cool and humid climates, are vulnerable to fire and ero-
sion. The latter can be intensified, for example, when slopes 
are stripped of vegetation during logging and road construc-
tion, especially on slopes between 20–30° (Nagle, 2000). Cli-
mate change may lead to changes in vegetation composition 
(Suonan et al., 2019) and a slowdown in litter accumulation. 
Forest stand restoration and the adaptation of forest habitats 
to the trophic conditions of the soil are also live issues (Gałka 
et al., 2014). Folisols are mosaic in pattern and co-occur with 
other soil types and orders. They are strongly morphologically 
diverse, owing to the geomorphology of the rock-mineral sub-
strate, the type and rate of plant detritus accumulation, the 
weather, and any disruptions to organic matter deposition. 
The most important equivalents of folisols in the WRB clas-
sification (IUSS Working Group WRB, 2022) are Folic (Rockic/
Mawic) Histosols, while folisols are mostly classified as Lithic/
Typic Udifolists in the Soil Taxonomy classification (Soil Sur-
vey Staff, 2022). 

Fig. 2. Organic soils of Poland: (a) thin murshic soil (SGP: gleba murszowa płytka) – WRB: Eutric Histic Gleysol – Brod-
nica Lakeland; (b) hemic murshic soil (SGP: gleba murszowa hemowa) – WRB: Murshic Hemic Histosol – Middle Noteć 
River Valley; (c) rocky folisol (SGP: gleba ściółkowa skalista) – WRB: Folic Rockic Histosol – Stołowe Mountains; (d) 
debris folisol (SGP: gleba ściółkowa rumoszowa) – WRB: Folic Mawic Histosol – Western Tatra Mountains. Abbrevia-
tions: as in Fig. 1
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6. Distribution and land use of organic soils in Poland

The distribution and area covered by the soils that are 
classified as organic in SGP 6 (2019) has not been satisfactorily 
documented, despite the extensive research conducted in recent 
decades. On the one hand, this is a consequence of the changed 
criteria as to what qualifies as an organic soil, but is also the 
consequence of the very dynamic changes that occur in these 
soils after drainage. In this context, degradative changes that 
lead to the loss of organic matter are particularly important, for 
example, the shift of organic soils with a shallow organic layer 
to mineral soils.

The first estimates of the area covered by organic soils (then 
peat soils) in Poland were based on data obtained during the 
geological documentation of peat deposits, which was mainly 
carried out in the 1950s, 1960s and 1970s (Żurek, 1987; Ilnicki 
and Żurek, 1996; Dembek et al., 2000; Ilnicki, 2002). In this inven-
tory, peats were considered to contain over 20% organic matter 
(referred to as loss-on-ignition) and have an organic layer (peat) 
of at least 30 cm, which is the same in SGP 6 (2019). As men-
tioned above, traditionally peatlands were divided into raised, 
transitional and fens (Kulczyński, 1949; Tołpa et al., 1967). The 
inventory covered sites with an area of > 1 ha. However, some 
peatlands, especially in the restricted border zones and within 
forests used by the army were not included in the inventory. 
This led to an underestimation of the area of peatlands in Po-
land. In addition, given the time that has passed since the be-
ginning of the inventory, its usefulness today is significantly 
limited. Therefore, an update of this inventory was undertaken 
in the 1990s, which had a broader scope as, in addition to peat-
lands, it included all wetland areas (peatlands and non-peat wet-
lands) (Ilnicki, 2002). Based on these updated estimates, it was 
determined that there were 50,200 peatlands in Poland, which 
covered 1,322,000 ha, i.e. 4% of the country (Dembek et al., 2000). 
More recent work by Kotowski et al., (2017), which included the 
1990s inventory, forest site type data and some data from soil 
agricultural maps, provided an estimate of 1,495,000 ha. Accord-
ing to their estimation, fen peatlands were dominant in Poland 
and constituted 92.4% of the peatland area, while transitional 
peatlands and raised bogs constituted 3.3%, and 4.3%, respec-

tively. However, this estimation is likely an underestimation as 
it applied only to peat soils (and not all organic soils) and did not 
take into account peatlands <1 ha. In addition, the changes that 
occurred (since the 1950s) in the areas covered by organic soils 
were not taken into account, e.g. many soils have developed into 
mursh, mursh-like soils and black earths after drainage. As such, 
there is an urgent need to estimate the area occupied by organic 
soils, as well as the area covered by soils of “organic” origin that 
accompany organic soils in the landscape, which also deserve 
attention due to their large stores of organic C. 

In the most recent assessments, i.e. Poland’s National Inven-
tory Report (Bebkiewicz et al., 2022), the area of organic soils 
(mainly developed from peats) is estimated at 1.3 million ha (Ta-
ble 2), which equates to 4.3% of the land area. These soils are 
mainly covered by grassland vegetation and forests (Table 2). 
Organic soils on cropland constitute 12%, and other lands (wet-
lands and settlements) cover 2.5%. Approximately 84% of peat-
lands are drained, and peat accumulation may occur on only 
202,000 ha (approximately 16%) (Joosten et al., 2012). 

Organic soils mainly develop in depressions, where they 
form peatlands. In Poland, the largest area is occupied by rhe-
ophilic peats (fens) fed by fertile flowing waters. They occur as 
valley peatlands, and occupy large areas in central Poland in large 
rivers valleys (in the old glacial zone), where they co-occur with 
alluvial soils (Roj-Rojewski and Walasek, 2013; Kabała, 2022). 
However, there are numerous lake and lakeside peatlands in 
the young glacial zone in northern Poland. Low valley peatlands 
cover large areas in the Land of Great Valleys, where wide ice-
marginal valleys (Wrocław-Magdeburg-Bremen, Głogów-Baruth-
Hamburg, Warszawa-Berlin and Toruń-Eberswald (also called as 
the Noteć-Warta ice-marginal valley) have become peat-covered. 
Due to their importance for biodiversity, peatlands in the Narew 
and Biebrza valleys are protected in national parks. The eastern 
part of the Land of Great Valleys is Lublin Polesie, which con-
tains numerous lakes and large areas of peatlands, swamps and 
meadows. Many carbonate peatlands can be found due to the 
carbonate nature of the mineral substrate (chalky rocks, loess) 
(Zawadzki, 1957). It should be noted that 52% of peatlands in 
Poland are underlain by limnic sediments, i.e. their origin is 
related to peat formation within lakes (Kotowski et al., 2017). 

Table 2
Area of organic soils under various land use categories in Poland (Bebkiewicz et al., 2022), as 
reported in the Poland’s National Inventory Report (2022)

Land use category* Area [ha] Share 

Polish land area [%] Organic soil area [%]

Forest land 338,490 1.09 25.38

Cropland 160,040 0.51 12.00

Grassland 801,840 2.57 60.13

Wetlands 23,500 0.08 1.76

Settlements 9,750 0.03 0.73

TOTAL 1333,620 4.28 100.00

 * – according to Poland’s National Inventory Report (2022) 
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The zonal distribution of peatlands and organic soils in 
Poland results from a distribution of land depressions (Żurek, 
1987; Dembek et al., 2000; Łachacz, 2016). Peat and mursh soils 
formed as a result of drainage prevail. Limnic soils classified as 
the gyttja subtype are related to artificial drainage of lakes (e.g. 
Łachacz and Nitkiewicz, 2021), which explains why they are par-
ticularly abundant in the young glacial landscape. They are the 
result of a specific land management model, popular in the sec-
ond half of the 19th century and the beginning of the 20th century 
in countries (regions) located south of the Baltic Sea.

Lands covered with organic soils have been used for a wide 
range of purposes. In Europe, peat soils and peat deposits have 
been extracted for heating, for plant bedding, mulching or fer-
tilisation since the 10th century (in Poland since the 17th century 
with intensified excavation in the 19th century) (Ilnicki, 2002). 
Since the 1970s, the use of peat as a fuel has declined and peat-
lands are instead utilised for agricultural and horticultural pur-
poses (peat-based growing media), which has led to the degrada-
tion of peat soils. 

Agricultural use of organic soils has been frequently related 
to biomass production (hay for animals), grazing or arable crops. 
For grassland use, it was important to lower the groundwater 
level to approximately 30–80 cm and for arable use to 100–120 
cm. In the first years of usage, the drained organic soils were 
fertile (abundant in N and P). However, excessive drainage initi-
ated many negative physical and chemical processes, peat min-
eralisation and subsequent peatland subsidence, a reduced abil-
ity to retain water, and increased GHG emissions. Consequently, 
organic soils have become degraded and some have disappeared 
from the landscape when the organic matter component was 
completely mineralised. 

7. Protection of organic soils in Poland

Organic soils are vulnerable to any natural or human in-
terference, which may include climatic changes, artificial drain-
age, afforestation or deforestation, pollution, agricultural use, 
burning, or exclusion from previous agricultural use (Fenner 
and Freeman, 2011; Fenner et al., 2011; Glina et al., 2016b; Hel-
ler and Zeitz, 2012; Holden et al., 2004; Kalisz et al., 2010; Kalisz 
et al., 2015; Kalisz et al., 2021; Karpińska-Kołaczek et al., 2024; 
Łachacz et al., 2009, 2023; Mendyk et al., 2016; Markiewicz et al., 
2015; Sim et al., 2023; Smólczynski et al., 2011; Sulwiński et al., 
2020; Smólczynski et al., 2021). 

Organic soils are protected under international agreements 
and conventions. Their unique role in the environment has been 
recognised by the Ramsar Convention of 1971 (in force in Poland 
since 1975), which proposed several activities to protect these 
unique habitats. The current European Union Council Directive 
79/409/EEC (1979) (Birds Directive) and Council Directive 92/43/
EEC (1992) (Habitats Directive) (which have been transposed 
into Polish law) placed an obligation on EU Member States to 
establish the Natura 2000 network, which is the EU’s flagship 
biodiversity program, under which endangered species on the 
surface of peat soils, as well as flora and fauna habitats are con-
served (Grzybowski and Glińska-Lewczuk, 2020). 

In recent years, the approach to the utilisation and protec-
tion of organic soils in Poland has changed substantially, and 
is now directly focused on the use and protection of wetlands, 
including peatlands. In the late 1950s and 1960s, peatlands 
were treated as agricultural land (ordinance of Minister of Ag-
riculture, 30 July 1960). Another important legislation for the 
protection of peatlands was the 1982 Act on the Protection of 
Agricultural and Forestry land (Act No. 11, item 79), which in-
cluded an additional category, “peatlands being wastelands”, 
as agricultural land, alongside arable land, grassland and for-
est land. Nowadays, peatlands in Poland are protected under 
several legislations (Act on the Protection of Agricultural and 
Forest land (1995), Act on the Protection of Nature (2004)) and 
by strategic plans and programs. The latter includes the Pro-
gramme for the Protection and Sustainable Use of Biodiversity, 
specific plans for water management and drought prevention, 
a Strategy for the Protection of Wetlands, a strategy for rural 
development, agriculture and fishery, a strategic plan for ad-
aptation in sectors and areas vulnerable to climate change, and 
the Common Agricultural Policy. The Strategy for the Protec-
tion of Wetlands (Jabłońska et al., 2021) contains proposed ac-
tions for the protection of wetlands, including peatlands and 
organic soils. With regard to organic soils, a 30% reduction in 
GHG emissions is targeted, as is the promotion of natural proc-
esses in soils, an improvement in water retention, as well as 
protection of the soils. The strategy explicitly identifies threats 
to organic soils (as well as threats to peatlands), such as drain-
age and inadequate protection that results in damage of lands, 
as well as the location of settlements on organic soils. These 
threats lead to increased oxidation within the soil and increased 
GHG emissions, extinction of various species that grow or live 
in/on organic soils, poor water retention functions or impaired 
ecosystem services. 

The challenge for environmental managers is to restore 
damaged and degraded organic soils to self-sustaining natural-
ly functioning ecosystems that are able to accumulate organic 
matter and retain nutrients (Vasander et al., 2003). Therefore, 
the activities that permit restoration in the first place should 
include the limitation of drainage, utilisation of organic soils 
as grasslands with a high moisture content (so-called wet 
farming), avoidance of ploughing and/or fertilisation, which 
enhance organic matter oxidation. In recent years, drained 
peatlands and organic soils have received special attention as 
they are recognised as one of the drivers of climate change (CO2 
emitters). Therefore, an emphasis has been placed on the pres-
ervation of existing natural sites and the restoration of drained 
areas. To substantially reduce CO2 emissions, the fundamental 
functions of organic soils (ability to retain water, ecological 
functions and biodiversity) must be restored. Wet organic soils 
can mitigate floods and droughts, as well as filter water, there-
by improving overall water quality. The key to protection of 
organic soils is the way that they are used. The most important 
factor is to maintain high moisture levels in the topsoil and use 
of wet or rewetted soils (e.g. Renger et al., 2002; Jurczuk, 2011). 
In order to protect organic soils from excessive mineralisation 
(thereby limiting negative changes in the soil), Okruszko (1979) 
developed a concept of prognostic soil-moisture complexes that 
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 enable water retention and the capillary properties of soils to 
be predicted after drainage. This concept was further devel-
oped by Szuniewicz (1979). 

One of the ways to restore some of these functions and 
provide ecosystem services is to promote paludiculture (wet 
farming), which includes wet organic soils, for the agricultural 
production of reed and moss biomass (to use as plant bedding, 
roof cover, horticultural products, etc.), while simultaneously 
preserving the organic matter content in the soil. As with any 
land use, paludiculture also has negative aspects – peat accu-
mulation, C storage and biodiversity functions may not be fully 
restored when the biomass is harvested. Moreover, farmers 
may not be fully aware of the economic opportunities offered 
by wet organic soils. In some cases, rewetting of organic soils 
may encounter difficulties, such as a requirement for formal 
permits to block drainage ditches. Furthermore, rewetting may 
result in eutrophication as mobile compounds (especially P and 
N) in mursh materials can migrate to ground and surface wa-
ters. The development of (a) local initiatives that explore new 
methods for the sustainable management of fen soils, and (b) 
new business models for farmers and producers is key to help 
meet future climate goals (Xu et al., 2018). 

8. Future organic soils research 

Our review of the literature revealed that there is a lack 
of a consistent database of peatland types, organic soil units 
and their current transformation status. For example, Jabłońska 
et al., (2021) attempted to estimate the area of peatlands based 
on the GIS Wetlands database and on a forest database and 
datasets from the Institute of Soil Science and Plant Cultivation 
in Puławy. In their approach, they did not take into account that 
the GIS Wetlands database excluded peatlands with an area 
<10 ha, while the metadata for GIS Wetlands were from the 
1950s, and the database itself was from the 1990s, and there-
fore out of date. Moreover, the data included in the various 
databases may overlap leading to incorrect estimations. In this 
respect, strong cooperation between policy makers, research-
ers, farmers and stakeholders is critical. Recently, the Institute 
of Soil Science and Plant Cultivation in Puławy has made a step 
towards updating the spatial database of soils with organic ori-
gins, based on a soil-agricultural map. It is well-known among 
soil scientists in Poland that organic soils have been substan-
tially transformed since the maps were first released. Some 
peat, mud or gyttja soils no longer exist as they were mineral-
ised and transformed into mineral soils. In contrast, there are 
also areas where organic soils have been  restored, which also 
requires revision. 

Given the above, the most important current directions of 
research on organic soils should include updating the resources 
of the organic soils database and the soils rich in organic C that 
accompany them in the landscape (some can be described as 
post-peat soils). Such a database should be linked to the distri-
bution of organic soil contours (updated soil maps). In addition 
to this overarching task, a number of detailed research aspects 
should be pursued (Łachacz et al., 2023). These include: 

• Improvement of methods for field and laboratory identifica-
tion of materials that form organic soils (Schulz et al., 2019; 
Wittnebel et al., 2021; Saurette and Deragon, 2023; Volun-
gevicius and Amaleviciute-Volunge, 2023). The development 
of criteria to distinguish the various organic soil materials 
from mineral soils with a higher organic C content. 

• Increased research on water conditions and trophism asso-
ciated with folisols to better understand the functions and 
role of these soils in the environment. 

• Development of protocols to monitor (using field studies 
and remote sensing techniques) the distribution of organic 
soils and their transformation status (degradation) caused 
by progressive drainage. 

• Development of approaches to limit (inhibit) SOM minerali-
sation and GHG emissions from agriculturally used organic 
soils.

• Determination of the effects of rewetting on the soil proc-
esses and properties of mursh materials. 

• Determination of the influence of the mineral component 
or subsoil on the properties and evolution of drained or-
ganic soils. 

• Research on how the transformation of the organic and 
mineral components of drained organic soils impacts their 
physical properties, including structure, hydrophobicity 
and water retention capacity. 

• Research on the effect of mursh development stage on 
the physico-chemical properties of those soils, including 
the availability of nutrients for plants. 
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Geneza, przekształcenia i klasyfi kacja gleb organicznych w Polsce

Słowa kluczowe

Torf
Gytia
Muł
Mursz
Systematyka gleb
Gleba Roku

Streszczenie

Polskie Towarzystwo Gleboznawcze wybrało gleby organiczne jako gleby roku 2024. Są to gleby 
zbudowane z materiałów zawierających ≥12% węgla organicznego, do których zaliczamy torfy, 
gytie i muły, a także gleby zbudowane z utworów ściółkowych (liście, szczątki drzewne i części 
roślin trawiastych), które zawierają ≥20% węgla organicznego. Specyfi czne właściwości tych gleb, 
przede wszystkim wysoka zawartość węgla organicznego, niska gęstość objętościowa i wysoka 
porowatość, zdecydowanie odróżnia je od gleb mineralnych. W 6 wydaniu Systematyki gleb Pol-
ski wyróżniono cztery główne typy gleb organicznych, tj. gleby torfowe, gleby limnowe, gleby 
murszowe i gleby ściółkowe. Szacunkowa powierzchnia gleb organicznych w Polsce waha się od 
4 do 5%. Gleby te zlokalizowane są głównie w bezodpływowych zagłębieniach terenu i dolinach 
rzecznych. Wyjątek stanowią gleby ściółkowe występujące głównie na terenach górskich. Wśród 
gleb organicznych zdecydowanie największą powierzchnię zajmują gleby torfowe i murszowe, 
użytkowane rolniczo. Gleby organiczne są uważane za największy naturalny lądowy rezerwuar 
węgla organicznego, jednak obserwowane zmiany klimatu, w połączeniu z intensywną działal-
nością człowieka wpływają negatywnie na ich potencjał do długotrwałego magazynowania węgla 
organicznego. W niniejszym artykule przeglądowym przedstawiono: (a) koncepcję gleb organicz-
nych w Polsce; (b) aktualny schemat klasyfi kacji gleb organicznych w Polsce oraz ich korelacji 
z międzynarodowymi systemami (WRB i Soil Taxonomy) (c) przegląd rozmieszczenia, użytkowa-
nia, zagrożeń i ochrony gleb organicznych w Polsce; oraz d) potencjalne przyszłe kierunki badań 
dotyczące gleb organicznych. 
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