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1. Introduction

Properly functioning agricultural systems are needed to meet 
the food needs of a globally growing population (Boscaro et al., 
2018). To feed a growing world population sustainably, the pro-
duction of accurate, up-to-date soil health information is essential 
to support agricultural development, environmental sustainabil-
ity, and to mitigate the effect of climate change. One of the most 
important factors affecting agricultural production is the soil 
organic matter (SOM) content. Depletion of SOM can lead to soil 
degradation with implications for sustainable agricultural devel-
opment (Tang et al., 2006), so it is important to investigate and es-
timate its values quickly and non-invasively. Traditional methods 
for estimating soil organic carbon (SOC) content are destructive. 
Walkley and Black (1934) method, Walkley and Black modified 
with external heating, Kalembasa and Jenkinson (1973), Tyurin 
method, and modified Tyurin method (Ponomariova and Plotnik-
ova, 1980) are the most used conventional methods (Kononova, 
1966; Filcheva, 2002) for the evaluation of organic carbon, used to 
quantify humus and its components. Most of these SOC monitor-
ing techniques need a lot of time and resources since they rely 
heavily on rigorous sampling (Goidts and van Wesemael, 2007). 
Inventory and evaluation of the spatial and temporal changes in 

SOC would therefore be considerably facilitated by the develop-
ment of a reliable, accurate, and affordable technique to estimate 
SOC content. Visible and near-infrared reflectance spectroscopy 
(Vis-NIRS), in contrast to traditional testing methods, has devel-
oped into a rapid, non-destructive, and economical tool for deter-
mining a variety of soil parameters, including SOC content in the 
previous years (Ben-Dor et al., 1995; Stenberg et al., 2010; Nagy 
et al., 2007; Nagy and Tamás, 2009). Rapid and valuable SOC esti-
mation methods are essential for precision agriculture to explore 
the spatial heterogeneity of SOC, which is a determinant factor of 
nutrient supply. The reflectance values can be used to predict the 
physical and chemical properties of soils using multivariate equa-
tions (Cecillon et al., 2009). The spectral reflectance of soil is in-
fluenced by several factors, including soil moisture, aggregation, 
texture, and surface roughness, all of which interact with spec-
tral formations in complex ways (Ben-Dor et al., 2008; Kuang and 
Mouazen, 2013, Piekarczyk et al., 2016). NIRS calibration consists 
of four main steps (Ge et al., 2007). The first is the measurement, 
during which the concentration of the targeted soil components 
is determined in the laboratory and their spectroscopic reflect-
ance is obtained. The second is pre-treatment, where the spectro-
scopic reflectance is pre-processed. The third is calibration, dur-
ing which a subset of the samples is used to develop regression 
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with moderately good coeffi  cients of determination (R2=0.47–0.61). The results demonstrated that 
VIS-NIR spectroscopy (especially NIR) based organic carbon content estimation models are suitable 
for rapid estimation of soil SOC%. This can reduce sampling costs by optimizing the number of sam-
ples to be sent to the laboratory and by identifying heterogeneous patches in the study area.
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models, and the fourth is validation, during which the remaining 
samples are used to assess the validity of the regression models 
for the remaining samples. NIRS calibrations that have not been 
validated with independent samples or that have not been used 
in the calibration procedure are generally less reliable (Brunet et 
al., 2007; Nduwamungu et al., 2009) and over-optimistic (Russell, 
2003; Siebielec et al., 2004; Butkute and Slepetiene, 2006; Brunet 
et al., 2007; Terhoeven-Urselmans, 2008). Soil samples should be 
pre-treated before calibration of the NIRS model to increase the 
homogeneity of the sample and thus reduce interference from 
variations in particle size distribution (Couteaux et al., 2003). The 
560 nm, 750 nm, 760 nm, 1000 nm, 1100 nm, 1600 nm, 1400 nm, 
1700 nm, 1800 nm, 1900 nm, 2000 nm, 2200 nm, and 2400 nm 
VIS-NIR bands are relevant for SOC estimation in several studies 
(Laamrani et al., 2019). Other investigations have also demonstrat-
ed a considerable effect of water, a highly essential soil element, 
in the VIS-NIR region in bands approximately 1400–1900 nm 
(Viscarra et al., 2006; Viscarra and McBratney, 2008). Regression 
methods used with NIRS in soil analyses include multiple regres-
sion analysis (MRA), stepwise multiple linear regression (SMLR), 
multivariate adaptive regression splines (MARS), radial basis 
function networks (RBFN), principal component analyses (PCA), 
and partial least-squares regression (PLSR) and wavelet analysis 
is also promising (Ge et al., 2007). Principal Component Analysis 
(PCA) and Partial Least Squares Regression (PLSR) are two of the 
most widely used methods for quantifying SOC (Viscarra et al., 
2006). They are multivariate statistical methods for meshing high-
dimensional correlated variables by decreasing data variance to 
fewer new bands. This will determine which new tracks contain 
the most relevant information for further modelling and analy-
sis (Liu et al., 2020). On the other hand, using spectral indices for 
less robust SOC modelling is also promising. Good results were 
found for indices based on specific SOC-sensitive spectra ranges 
of Vis and NIR (R2=0.80–0.81) which gives comparable results with 
results of PLSR (Bartholomeus et al., 2008). However, this study 
used previously reported specific SOC-sensitive spectra ranges 
for index development, which might result in a considerable er-
ror in extrapolation beyond the SOC range in the training data.

Another main uncertainty in SOC modelling is that soil 
properties are very heterogeneous and diverse, and there is 
a lack of national or even internationally uniform standards for 

spectral measurement methods, databases, and even laboratory 
measurement methods for SOC determination (Zhou and Zhou, 
2009). In sensing techniques including Vis-NIR, to overcome site-
specific constraints and to be useful for monitoring spatiotem-
poral SOC dynamics, regional spectral measurements, spectral 
libraries, and estimation models are required for more accu-
rate estimation of SOC content (Viscarra and McBratney, 2008). 
Therefore, closing this information gap was the primary goal of 
the current study providing regionally accurate non-invasive 
SOC monitoring methods with a less robust modelling approach 
combining PCA results and spectral indexing. The objectives of 
this study were (I) to set soil spectral database at a regional scale 
(II) to integrate the use of PCA into spectral reflectance-based 
indices for soil organic carbon quantification to set and vali-
date SOC estimation models based on regionally collected soil 
spectral data (III) to evaluate the performance of SOC estimation 
models using VIS and NIR spectroscopy performing the best at 
regional scale. The results can serve spectral-based SOC estima-
tion solutions specific to the soils of the most important agricul-
tural region in the Carpathian basin.

2. Materials and methods

2.1. Study area

The samples of this study were taken in the Northern Great 
Plain (Hungary) (Fig. 1). The study region is in an international 
watershed, the Tisza river‘s lowlands and it is the most impor-
tant agricultural region in the Carpathian basin. During the 
growing season, the average annual daily temperature in Hun-
gary‘s plain locations of the Tisza watershed ranges between 
10°C–17.5°C. Despite having a humid continental climate with 
an average precipitation of 495 mm, the Great Plains region is 
plagued by water management problems. Floods, excess water, 
and droughts occur frequently even in the same year, often dur-
ing the same vegetation period (Nagy et al., 2021). The soils of 
the lowland areas are very heterogeneous according to the WRB 
(IUSS Working Group WRB, 2022) with the following soil groups: 
Chernozems, Arenosols, Vertisols, Regosols, Solonetz, and Solon-
chak (Michéli et al., 2006).

Fig. 1. Location of the study area
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2.2. Measurement method and data processing

A total of 90 soil samples were collected from 0–20 m–2 
depth, of which 60 soil samples were used for calibration and 
30 soil samples were used to validate the models. Regosols (15%), 
Chernozems (35%), Vertisols (15%), Arenosols (15%), Solonetz, 
and Solonchak (20%) soil samples were collected to cover the 
most common soil types occurring in the study area. The sam-
ple sites were randomly defined based on the soil map of Hun-
gary (Mezősi, 2016). Samples were collected from arable land 
before the vegetation period, one sample is the mean of 5 sam-
ples, randomly collected from each (90) sample site. Samples 
for validation are selected randomly from each soil type. The 
soil samples were prepared for laboratory measurements made 
in accordance with Hungarian standards (MSZ). The soil sam-
ple was dried in a drying oven at a maximum temperature of 
40°C and ground. Before grinding plant, residues were removed 
from the samples (MSZ-08-0206-1:1978). The pHH2O and pHKCl 
was determined potentiometrically, the soil to solution ratio 
was 1:2.5. (MSZ-08-0206-2:197). The saturation percentage was 
determined by weighing 100 g of air-dry soil in a porcelain mor-
tar and slowly saturated with water. The amount of water con-
sumed (ml) gives the saturation percentage (MSZ-08-0205:1978). 
The amount of water-soluble salt was determined based on 
the conductivity and temperature data (MSZ-08-0206-2:1978). 
The content of calcium carbonates was tested with a Scheibler 
calcimeter (MSZ-08 0206/2-78). SOC content was measured us-
ing 5% K2Cr2O7 and concentrated H2SO4 (MSZ-08-0210:1977). For 
the determination of ammonium lactate (AL) soluble P2O5 was 
35.6–798 mg/kg and AL-soluble K2O content extracting solution 
consisting of lactic acid, acetic acid, and ammonium acetate with 
a pH 3.70 was used for extraction and the soil suspension is fil-
tered off after shaking. The P, K, content was measured using an 
ICP-OES apparatus (MSZ-20135:1999). For the determination of 
potassium chloride (KCl)-soluble NO3-N in soils extracting solu-
tion with l M KCl concentration was used. Then after shaking, 
the soil suspension was filtered, and the nitrite-nitrate nitrogen 
was determined by spectrometry (MSZ-20135:1999). For statisti-
cal evaluation, the R studio agricolae package was used (Mend-
iburu, 2019). The normal distribution of the results was analysed 
using the Shapiro-Wilk test, and the Kruskal-Wallis test was used 
to test the homogeneity of the samples. Spectral measurements 
were performed in a controlled laboratory environment. Spec-
tral profiles (reflectance) between 400–2500 nm was measured 
using two separate laboratory-scale spectrometers. The AvaSpec 
2048 spectrometer in the 400–1000 nm wavelength range with 
a spectral resolution of 0.6 nm and the AvaSpec-NIR spectrom-
eter in the 1000–2500 nm wavelength range with a 5 nm spectral 
resolution. The measurement process with both spectrometers 
was similar. The soil samples were scanned in a special propri-
etary sampling box using an Ava-Light-HAL halogen light source 
at high intensity. The sampling box provides a controlled, com-
pletely, dark scanning environment for spectral measurements. 
An equal distance of 5 mm between the sample and the sensor 
was used to ensure homogeneous measurements in three repli-
cates. Three replicates of each sample were taken and averaged 
into one spectrum per sample. For accurate estimation of the 

percentage of SOC, proper pretreatment of the soil samples for 
spectral analyses is important (Brunet et al., 2007; Ludwig et 
al., 2002; Van Waes et al., 2005; Croft et al., 2012). The soil sam-
ples were dried at 105°C, sieved and ground to a size fraction 
below 0.25 mm to exclude coarse and medium fine sand, thus 
obtaining a more homogeneous sample for analysis (Guillou et 
al., 2015; Nawar et al., 2016; Terra et al., 2015; Shi et al., 2015). 
Furthermore, the smaller the soil particle, the larger the surface 
area and the higher the spectral reflectance (Banninger and Flu-
hler, 2004), which can enhance the detectability of soil changes 
in reflectance. 

2.3. SOC model building and performance assessment

Statistical analysis of the results was performed using SPSS 
software. PCA with varimax rotation was used for data compres-
sion outliers detection and to study the patterns and internal 
structure within the whole data to identify wavelengths with the 
highest variation based on factor weights to identify SOC-sensi-
tive wavelengths. PCA analyses were performed on log 1/R, data, 
where R represents reflectance. Varimax is an orthogonal rota-
tion method used to generate incredibly high or significantly 
lower factor loadings, making it much easier to assign individual 
objects to a single factor (Allen, 2017). Besides PCA, the SD of the 
spectral features was also studied to select those wavelengths 
where the variations are the highest indicating the potential 
variability of SOC. After selecting SOC-sensitive wavelengths 
based on PCA and SD results in the 400–2500 nm range, spectral 
indices were set using the most sensitive, and the least sensi-
tive wavelengths. Spectral indexing is a common practice in the 
monitoring of soils in remote sensing studies (Nagy et al., 2014; 
Babaeian et al., 2019; Mohamed et al., 2020; Béni et al., 2021). The 
simple linear regression method was used to generate a model 
to estimate SOC based on 60 samples. The coefficient of determi-
nation (R2) was used to compare the strength of the regression 
models. For validation 30 independent samples were used. The 
root means squared error (RMSE) of squared error was used to 
measure the accuracy of the estimation models:

 (1)

and the normalized root means square error (NRMSE):

 (2)

The Nash-Sutcliffe efficiency (NSE) (1970) (3) was also used 
to assess the accuracy of the estimation of forecast: 

 (3)

where:yi: predicted yield data;
: the observed yield data;

: the average yield; 
n: the number of samples used for validation
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Values of NSE range between 1.0 (which is a perfect fit) 
and −∞. In this case, an efficiency of less than zero means that 
the observed yield’s average value would have been a better pre-
dictor than the model.

3. Results and discussion

SOC was ranging between 17.2–43.5 g kg–1 with an median of 
30.6±6.76 g kg–1, and the lower quartile was 25.15 g kg–1, the up-
per quartile was 34.80 g kg–1. The results suggest that the samples 
are homogeneous or similar with respect to the humus variable. 
The Kruskal-Wallis test found no statistically significant differ-
ence in the amount of humus in samples. This means that the 
amounts of humus measured in the respective samples are 
probably similar or close to each other. This gives the possibility 
to claim that the variability in terms of humus is homogeneous 
in the different samples. The Kruskal-Wallis chi-squared = 62, 
df = 58, p-value = 0.3355.

Physical and chemical parameters of soils were measured. 
The saturation percentage ranged from 26–48, so the samples 
included sand, sandy loam, loam, and clay loam. The numeri-
cal difference in the values of pH measured in 1 M KCl and H2O 
(pHKCl – pHH2O). The pHKCl of the soil samples tested ranged from 
4.57–7.40, so samples were found to be acidic to slightly alkaline. 
The pHH2O values ranged from 6.31–8.18. Calculations for the hy-
drogen ion concentration indicate that pHKCl is 1.08·10–6–3.32·10–6 
mol dm–3 and pHH2O is 1.13·10–7–1.46·10–8 mol dm–3. The total wa-
ter-soluble salt concentration was low and slightly saline ranged 
from 0.02–0.08 (m/m)%. Calcium carbonate concentration ranged 
from 0.107–1.73 (m/m)%, thus the soil samples were weakly cal-
careous. AL-soluble P2O5 was 35.6–798 mg kg–1 and AL-soluble 
K2O was 144.4–1489 mg kg–1. The KCl-soluble NO3-N (nitrogen 
in nitrate form) ranged from 1.18–25.169 mg kg–1 (Table 1). The 
chemical and physical parameters also show a high variability 
of the samples.

The reflectance profiles of dry soil samples were evaluated 
in the 400–2500 nm range. On average, the reflectance increas-
es linearly with longer wavelengths. The reflectance of the soil 
samples varied between 9–14% at shorter wavelengths, reach-
ing 34–39.5% at 1000 nm. The standard deviation curve of the 
reflectance profile took a parabolic shape. The minimum was 
at short wavelengths (400–430 nm) due to the high absorption 
of the soil. It then reaches a maximum at a relatively broad pla-
teau in the 600–800 nm wavelength range and then decreases 

Table 1
Mean physical and chemical properties of the soil samples

SOC% Saturation 
percentage

pHKCl
*
 

(mol dm–3)
pHH2O

*

(mol dm–3)
Calcium 
carbonate
(m/m)%

Total water 
soluble salt 
(m/m)%

AL-soluble 
P2O5 
(mg kg–1)

AL-soluble 
K2O 
(mg kg–1)

KCl-soluble 
NO3-N 
(mg kg-1)

<2.5 38.58 ± 5.72 1.08·10–6 1.13·10–7 0.44 ± 0.50 0.05 ± 0.02 149.5 ± 59.58 557.8 ± 279.6 7.88 ± 5.23

2.5–3.5 41.67 ± 0.87 9.49·10–7 1.33·10–8 1.43 ± 0.25 0.03 ± 0.01 304.6 ± 167.3 768.1 ± 381.8 7.72 ± 4.84

3.5< 41.28 ± 1.70 3.32·10–6 1.46·10–8 1.29 ± 0.36 0.02 ± 0.01 339.6 ± 192.3 697.7 ± 247.2 9.97 ± 5.44

* calculations for the hydrogen ion concentration 

Fig. 2. Reflectance curves and standard deviation obtained in VIS-NIR 
region

again up to 1000 nm. The standard deviation curve of the re-
flectance profile has a parabola-like shape. The minimum was 
at short wavelengths (400–430 nm) due to the high absorption 
of the soil. It then reaches a maximum in the 600–800 nm wave-
length range at a relatively broad plateau and then decreases 
again up to 1000 nm. Based on the SD, the largest variation of 
the reflectance was observed in the 650–750 nm range. In the 
1000–2500 nm range, on average, an increase in reflectance is 
observed with longer wavelengths, reaching a plateau between 
2150–2300 nm, followed by a slight decrease. However, there 
were three local decreases in reflectance at 1420 nm, 1930 nm, 
and 2210 nm, resulting in valleys in the reflectance curves. The 
first two deviations are typical of the water absorption bands 
of the soil spectrum (Bowers et al., 1965). Although for organic 
functional groups on the other side, there is a peak near 1930 nm, 
which may be masked by the strong influence of water in the 
1900 nm band (Knadel et al., 2009). The dynamics of the stand-
ard deviation (SD) curves were very similar to the reflectance 
curves. The SD curve showed a minimum at the 1020–1050 nm 
wavelength (Fig. 2).

The PCA resulted in five main components. The first fac-
tor explained 93.2% of the total variance, with the remaining 
four components explaining 5.58% of the variance, for a total 
explained variance of 99.8%. Based on the factor weights of the 
first component, the largest variance of the reflectance was in 
the 580–600 nm range, so the average of the reflectance factors 
measured at these wavelengths was used as the numerator of 
the first spectral index (Fig. 3). 

There were two minima in the factor weights, but because 
of the differences and variations identified earlier, the 960–
–970 nm range was considered less sensitive to SOC, and thus 
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we  calculated the Index1 = / .  The first SOC 
model (SOCmodel1) was based on linear regression with a moder-
ately strong regression value R2=0.47 (p=0.000). The first high-
light of the PCA curves in the NIR range was observed at 1020–
–1040 nm, which was combined with the second wavelength 
difference in 1900–2100 nm. The two observed deviations were 
used to form the Index2= /  model. The 
other SOC model (SOCmodel2) showed a strong correlation (R2=0.61, 
p=0.000). The SOCmodel3 is defined by the factor weights of the 
starting and ending wavelength ranges in the NIR. Based on this, 
a difference was observed in the 1000–1010 nm range, and the 
minimum of the factor weights was found in the 2420–2500 nm 
wavelength range, which is less sensitive to the SOC. From the re-
sults obtained, the created Index3= /  
had a strong regression value, R2=0.56 (p=0.000). Based on the 
PCA curve results, SOCmodel4 was constructed from the first VIS 
range rising factor weight data and the third NIR range ris-
ing factor weight data using Index4= / . 
The SOCmodel4 was based on linear regression with a moderately 
strong regression value R2=0.49 (p=0.000) (Table 2). Since the 
SOC content of samples are homogeneous, the potential reason 
for low regression is that Walkley and Black method underesti-
mates the SOC content in the soil, which could affect the strength 
of regression (Meersmans et al., 2009).

SOCmodel1, which performs also in the 400–1000 nm wave-
length range, provided RMSE=0.36 SOC%, NRMSE=11%, and 

Table 2
Statistics for the linear regression based SOC models

Model Unstandardized Coeffi  cients Standardized Coeffi  cients t Sig.

B Std. Error Beta

SOCmodel1 Constant 6.093 .730 8.348 .000

Index1 –6.125 1.363 –.684 –4.493 .000

SOCmodel2 Constant 9.344 1.061 8.806 .000

Index2 –8.167 1.327 –.782 –6.156 .000

SOCmodel3 Constant 7.121 .800 8.904 .000

Index3 –6.048 1.124 –.747 –5.381 .000

SOCmodel4 Constant 4.954 0.464 10.681 .000

Index4 –4.947 1.069 –.702 –4.630 .000

Fig. 3. Factor weights of the first component of the PCA result

NSE=0.56. SOC values ranged from 1.98–3.81 SOC% with an 
average standard deviation of 3.02 ± 0.49. Two models have 
been developed to predict SOC in the NIR wavelength range. 
SOCmodel2 has the strongest regression coefficient resulting from 
RMSE=0.21 SOC%, NRMSE=6.30%, and NSE=0.85 supporting the 
best reliability of the model estimation. The predicted values 
varied from 1.72–4.35 SOC% with an average of 3.15 ± 0.69. The 
use of SOCmodel3 performed RMSE=0.29 SOC%, NRMSE=8.70% and 
NSE=0.72. Estimated SOC values ranged from 2.05–4.22 SOC%, 
with a mean of 3.17 ± 0.68. The estimation accuracy of the 
SOCmodel4 was RMSE=0.29 SOC%, NRMSE=8.78%, and NSE=0.72. 
The predicted SOC values ranged from 2.18–3.83 SOC%, with an 
average SOC value of 3.10 ± 0.48 (Fig. 4).

In addition to the current study, previously developed 
models based on similar or different principles were collected 
to evaluate the accuracy of VIS-NIR spectroscopy in SOC de-
termination. Measurements were made using RED and NIR 
reflectance in a study by Béni et al. (2021). The values were 
determined by their patented instrument and compared with 
SOC results for different soil types in the reference laboratory 
study. The calibration was derived from the NIR/RED index, 
where a strong correlation (R2=0.73) was found between the 
values obtained with their patented detection method and the 
reference measurement data. On the other hand, there was no 
validation information. Ogrič et al. (2019) analyzed soil samples 
in the 400–2500 nm wavelength range in a study, but unlike the 
present study, they used Partial Least Square (PLS) to develop 
the estimation method and 1050°C dry combustion to deter-
mine the reference SOC data. Chang, et al. (2005) found a strong 
correlation between SOC and carbonate corrected dry combus-
tion reference values in the 1100–2500 nm wavelength range 
with R2=0.88. Islam, et al. (2003) followed a similar approach, 
then this research, analyzing soil samples in the 400–2500 nm 
range, and the reference SOC value was also similar to that de-
termined by Walkley and Black, but applying a combination 
of Principal component regression, and found similar results. 
Morón and Cozzolino (2002) also investigated the estimation of 
SOC in the 400-2500 nm wavelength range with a strong cor-
relation R2=0.74 with the reference values. Kühnel and Bogner 
(2017) in their study used 350–2500 nm PCA and CHN (carbon, 
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hydrogen, nitrogen) analysis and found that the obtained SOC 
results gave a strong correlation R2=0.69, which is almost iden-
tical to the result of the present study. In references, RMSE is 
between 0.25–0.64, in this study, it is 0.39, which proves, that 
the validation results of this study are also in correspondence 
with the studies described above and in Table 3.

5. Conclusions

Besides conventional analytical methods possess higher 
measurement accuracy for SOC, farmers still need reliable 
non-invasive, cost-effective, and rapid spectral-based methods 
to gain information on SOC. Considering the SOC content of 

Fig. 4. The accuracy of the estimations based on validation of SOC models

Table 3
Comparison of SOC estimation spectroscopy models

Predicted 
Method

Reference
Method

λ – Range 
(nm)

Cal/ Val 
Samples

R2 RMSE
(SOC%)

Range of SOC 
content 
(g kg–1)

SD of SOC 
content 
(g kg–1)

Reference

PCA SOC by Walkley and Black 400–2500 60/30 0.61 0.39 17.2–43.5 6.9 Present study

PLS SOC by Walkley and Black 660–940 Total of 26 0.73 * 11.9–60.5 * (Béni, et al., 2021)

PLS SOC by dry combustion 
1050°

400–2500 173/157 0.82 0.64 0.63–40.85 8.91 (Ogrič et al., 2019)

PCA SOC by 
CHN-analyses

350–2500 29/41 0.69 0.5 10.1–90.6 10.5 (Kühnel and 
Bogner, 2017)

PLS SOC by carbonate 
corrected dry combustion

1100–2500 161/83 0.88 0.38 0.5–40.8 10.4 (Chang, et al., 2005)

PCR SOC by Walkley and Black 400–2500 121/40 0.81 0.35 0.6–49.5 8.2 (Islam, et al., 2003)

PLS SOC by Walkley and Black 1100–2500 270/90 0.66 0.25 6.5–30 4.2 (Dunn, et al., 2002)

PLS SOC by dichromatic 
oxidation

400–2500 177/139 0.74 0.5 10.3–68.5 15 (Morón & Cozzolino, 
2002)

* not assessed

where
Cal/Val samples: calibration and validation samples
PCA: principal components analysis
PCR: principal components regression analysis
PLS: partial least square analysis.
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the soil samples used for modeling the models are appropri-
ate for the determination of SOC content of soils in a range of 
17.2–43.5 g kg–1. In this study four SOC% estimation models were 
developed based on spectral indices, supported by principal 
component analysis (PCA), resulted in moderately good coef-
ficients of determination (R2=0.47–0.61), indicating the feasibil-
ity of the method. Using the Index2= /  
was performed the best in SOC estimation, resulting the stron-
gest regression coefficient (R2=0.61), and the outperforming 
from the other developed models with better performance 
indicaters (i.e. RMSE=0.21 SOC%, NRMSE=6.30%, and NSE=0.85). 
Results show that non-destructive and chemical intensive spec-
tral index-based models in VIS-NIR offer less robust alternatives 
to traditional SOC measurement methods. In conclusion, this 
study demonstrates that VIS-NIR spectroscopy, especially in the 
near infrared (NIR) range, can be a valuable tool for predicting 
soil organic carbon (SOC%) in the lowland region of Hungary. 
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