PL EN
ORIGINAL PAPER
The patterns of soil microbial respiration and earthworm communities as influenced by soil and land-use type in selected soils of Hungary
 
More details
Hide details
1
Szent István University, Faculty of Agriculture and Environmental Science, Department of Soil Science, Páter Károly u. 1, 2100, Gödöllő, Hungary
 
 
Submission date: 2019-08-21
 
 
Acceptance date: 2020-04-16
 
 
Online publication date: 2020-06-03
 
 
Publication date: 2020-06-03
 
 
Soil Sci. Ann., 2020, 71(2), 139-148
 
KEYWORDS
ABSTRACT
The objective of this study was to determine patterns of soil microbial respiration (SMR) and earthworm communities in selected mollic (Chernozems and Phaeozems) and non-mollic (Luvisols and Arenosols) soils of Hungary, across three land-use types (grassland, arable land, and forest). Soil samples, to a depth of 25 cm, were collected from the surrounding areas of seven soil profiles. Soil microbial respiration, measured by basal respiration method, was significantly higher in mollic soils compared to non-mollic soils, with highest values in Chernozem soils and lowest in Arenosols. The mean basal respiration did not show significant difference between land-use types within mollic diagnostic category (p > 0.05), but it differed within non-mollic category (p< 0.05). We found available Ca2+ (r = 0.80), soil moisture content (MC) (r = 0.72), and Mg2+ (r = 0.69) to be strongly correlated with SMR. SMR was significantly higher in fine textured soils compared to coarser textured soils. The earthworm biomass and abundance varied significantly across soil and land-use types, however, explicit correlations with any of soil property measured was not observed. A total of five earthworm species were identified, i.e. Aporrectodea caliginosa, Octolasion lacteum, Aporrectodea rosea, Proctodrilus opisthoductus, and Aporrectodea georgii. Earthworm abundance, biomass, and species richness tend to be highest in grassland and lowest in arable land. Generally, in our study, available Ca2+, Mg2+, MC, and texture were the key drivers of the variation in SMR, whereas the earthworm communities were probably more influenced by agricultural activities related to tillage.
REFERENCES (59)
1.
Bååth, E., Anderson, T.H., 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry 35(7), 955–963. https://doi.org/10.1016/S0038-....
 
2.
Bertrand, M., Barot, S., Blouin, M., Whalen, J., de Oliveira, T., Roger-Estrade, J., 2015. Earthworm services for cropping systems. A review. Agronomy for Sustainable Development 35(2), 553–567. https://doi.org/10.1007/s13593....
 
3.
Birkás, M., Bottlik, L., Stingli, A., Gyuricza, C., Jolánkai, M., 2010. Effect of soil physical state on the earthworms in Hungary. Applied and Environmental Soil Science 2010, 1–7. https://doi.org/10.1155/2010/8....
 
4.
Blouin, M. et al., 2013. A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science 64(2), 161–182. https://doi.org/10.1111/ejss.1....
 
5.
Buzás, I. (szerk.), 1988. Talaj- és agrokémiai vizsgálati módszerkönyv 2. A talajok fizikaikémiai és kémiai vizsgálati módszerei. Mezőgazdasági Kiadó, Budapest. p. 90-92, 9698, 106-117, 175–177.
 
6.
Buzás, I. (szerk.), 1993. Talaj- és agrokémiai vizsgálati módszerkönyv 1. A talaj fizikai, vízgazdálkodási és ásványtani vizsgálata. INDA 4231 Kiadó, Budapest. p. 19, 37–41, 63.
 
7.
Chang, C. H., Szlavecz, K., Buyer, J. S., 2016. Species-specific effects of earthworms on microbial communities and the fate of litter-derived carbon. Soil Biology and Biochemistry 100, 1291–39. http://dx.doi.org/10.1016/j.so....
 
8.
Chen, Z., Dikgwalthe, S.B., Xue, J., Zhang, H., Chen, F., Xiao, X.,2015. Tillage impacts on net carbon flux in paddy soil of the Southern China. Journal of Cleaner Production 103, 70–76. https://doi.org/10.1016/j.jcle....
 
9.
Cheng, F., Peng, X., Zhao, P., Yuan, J., Zhong, C., Cheng, Y., Cui, C., Zhang, S., 2013. Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PLoS One 8(6), 67353. https://doi.org/10.1371/journa....
 
10.
Cluzeau, D., Guernion M., Chaussod R., Martin-Laurent F., Villenave C., Cortet J., Ruiz-Camacho N., Pernin C., Mateille T., Philippot L., Bellido A., 2012. Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. European Journal of Soil Biology 49, 63–72. https://doi.org/10.1016/j.ejso....
 
11.
Creamer, R.E., Stone, D., Berry, P., Kuiper, I., 2016a. Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method. Applied soil ecology 97, 36–43. https://doi.org/10.1016/j.apso....
 
12.
Creamer, R.E., Hannula S.E., Van Leeuwen J.P., Stone D., Rutgers M., Schmelz R.M., De Ruiter P.C., Hendriksen N.B., Bolger T., Bouffaud M.L., Buee M., 2016b. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology 97, 112–124. https://doi.org/10.1016/j.apso....
 
13.
Crittenden, S.J., Huerta, E., De Goede, R.G.M., Pulleman, M.M., 2015. Earthworm assemblages as affected by field margin strips and tillage intensity: An on-farm approach. European Journal of Soil Biology 66, 49–56. https://doi.org/10.1016/j.ejso....
 
14.
Csuzdi, Cs., Zicsi, A., 2003. Earthworms of Hungary (Annelida: Oligochaeta; Lumbricidae). 271.
 
15.
Dewi, W.S., Senge, M., 2015. Earthworm diversity and ecosystem services under threat. Reviews in Agricultural Science 3, 25–35. https://doi.org/10.7831/ras.3.....
 
16.
Dövényi, Z., Ambrózy, P., Juhász, Á., Marosi, S., Mezősi, G., Michalkó, G.,Tiner, T., 2008. Magyarország Kistájainak Katasztere. OTKA Kutatási Jelentések (Inventory of Microregions in Hungary. OTKA Research Reports).
 
17.
Egner, J., Riehm, H., Domingo, W., 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungliga Lantbrukshögskolans AnnalerAnn 26, 199–215.
 
18.
Ernst, G., Henseler, I., Felten, D., Emmerling, C., 2009. Decomposition and mineralization of energy crop residues governed by earthworms. Soil Biology and Biochemistry 41(7), 1548–1554. https://doi.org/10.1016/j.soil....
 
19.
FAO, 2006. Guidelines for soil description, Fourth edition. ISBN 92-5-105521-1. .
 
20.
Filep, T., Szili-Kovács, T., 2010. Effect of liming on microbial biomass carbon of acidic arenosols in pot experiments. Plant, Soil and Environment 56(6), 268–273.
 
21.
Fisk, M.C., Fahey, T.J., Groffman, P.M., Bohlen, P.J., 2004. Earthworm invasion, fine-root distributions, and soil respiration in north temperate forests. Ecosystems 7(1), 55–62. https://doi.org/10.1007/s10021....
 
22.
Gangwar, R.K., Makádi, M., Fuchs, M., Csorba, Á., Michéli, E., Demeter, I., Szegi, T., 2018. Comparison of biological and chemical properties of arable and pasture Solonetz soils. Agrokémia és Talajtan 67(1), 61–77. https://doi.org/10.1556/0088.2....
 
23.
Hamarashid, N.H., Othman, M.A., Hussain, M.A.H., 2010. Effects of soil texture on chemical compositions, microbial populations and carbon mineralization in soil. The Egyptian Society of Experimental Biology 6(1), 59–64.
 
24.
Hendrix, P.F., Mueller, B.R., Bruce, R.R., Langdale, G.W., Parmelee, R. W., 1992. Abundance and distribution of earthworms in relation to landscape factors on the Georgia Piedmont, USA. Soil Biology and Biochemistry 24(12), 1357–1361. https://doi.org/10.1016/0038-0....
 
25.
Huang, J., Zhang, W., Liu, M., Briones, M.J., Eisenhauer, N., Shao, Y., Cai, X.A., Fu, S., Xia, H., 2015. Different impacts of native and exotic earthworms on rhizodeposit carbon sequestration in a subtropical soil. Soil Biology and Biochemistry 90,152–160. https://doi.org/10.1016/j.soil....
 
26.
ISO - INTERNATIONAL STANDARD ISO16072 (First edition 2002.12.15.) Soil quality – Laboratory methods for determination of microbial soil respiration. Reference number: ISO 16072:2002 (E).
 
27.
ISO - INTERNATIONAL STANDARD ISO23611-1 (First edition 2006.02.01.) Soil quality – Sampling of soil invertebrates – Part 1: Hand-sorting and formalin extraction of earthworms, Reference number: ISO 23611-1:2006 (E).
 
28.
IUSS Working Group WRB., 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
 
29.
Ivask, M., Kuu, A., Truu, M., Truu, J., 2006. The effect of soil type and soil moisture on earthworm communities. Agricultural Science 17, 7–11.
 
30.
Jones, R.J.A., Verheijen, F.G.A., Reuter, H.I., Jones, A.R., 2008. Environmental assessment of soil for monitoring volume V: Procedures & protocols. EUR23490 EN/5. Office for the Official Publications of the European Communities, Luxembourg, 165pp. http://doi.org/ 10.2788/94366eusoils. jrc. ec. europa. eu/ESDB_Archive/eusoils_docs/doc. html (July, 2013).
 
31.
Józefowska, A., Pietrzykowski, M., Woś, B., Cajthaml, T., Frouz, J., 2017. Relationships between respiration, chemical and microbial properties of afforested mine soils with different soil texture and tree species: Does the time of incubation matter. European journal of soil biology 80, 102–109. https://doi.org/10.1016/j.ejso....
 
32.
Kamdem, M.M., Otomo, P.V., Ngakou, A., Yanou, N.N., 2018. Distribution and diversity of earthworm (Annelida, Clitellata) populations across four land use types in northern Cameroon. Turkish Journal of Zoology 42(1), 79–89. https://doi.org/10.3906/zoo-17....
 
33.
Kaštovská, E., Šantrůčková, H., Picek, T., Vašková, M., Edwards, K.R., 2010. Direct effect of fertilization on microbial carbon transformation in grassland soils in dependence on the substrate quality. Journal of Plant Nutrition and Soil Science 173(5), 706–714. https://doi.org/10.1002/jpln.2....
 
34.
Katulanda, P.M., Walley, F.L., Janzen, H.H., Helgason, B.L., 2018. Land use legacy regulates microbial community composition in transplanted Chernozems. Applied Soil Ecology 129, 13–23. https://doi.org/10.1016/j.apso....
 
35.
Kužel, S., Kolář, L., Gergel, J., Peterka, J., Borova-Batt, J., 2010. Influence of the degree of soil organic matter lability on the calcium carbonate equilibrium of soil water. Soil and Water Research 5(2), 58–68. https://doi.org/10.17221/18/20....
 
36.
Liu, L, Zhang, T., Gilliam, F.S., Gundersen, P., Zhang, W., Chen, H., Mo, J., 2013. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS One 8(4), 61188. https://doi.org/10.1371/journa....
 
37.
Lowe, C.N., Butt, K.R., 2003. Influence of food particle size on inter- and intra-specific interactions of Allolobophora chlorotica (Savigny) and Lumbricus terrestris. Pedobiologia 47, 574–577.
 
38.
Lubbers, I.M., Pulleman, M.M., Van Groenigen, J.W., 2017. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biology and Biochemistry 105, 12–24. https://doi.org/10.1016/j.soil....
 
39.
Lubbers, I.M., Van Groenigen, K.J., Fonte, S.J., Six, J., Brussaard, L., Van Groenigen, J.W., 2013. Greenhouse-gas emissions from soils increased by earthworms. Nature Climate Change 3(3), 87–194. https://doi.org/10.1038/NCLIMA....
 
40.
Moghimian, N., Hosseini, S.M., Kooch, Y., Darki, B.Z., 2017. Impacts of changes in land use/cover on soil microbial and enzyme activities. Catena 157, 407–414. https://doi.org/10.1016/j.cate....
 
41.
Mori, T., Lu, X., Aoyagi, R., Mo, J., 2018. Reconsidering the phosphorus limitation of soil microbial activity in tropical forests. Functional Ecology 32(5), 1145–1154. https://doi.org/10.1111/1365-2....
 
42.
Moscatelli, M.C., Secondi, L., Marabottini, R., Papp, R., Stazi, S.R., Mania, E., Marinari, S., 2018. Assessment of soil microbial functional diversity: land use and soil properties affect CLPP-MicroResp and enzymes responses. Pedobiologia 66, 36–42. https://doi.org/10.1016/j.pedo....
 
43.
Orgiazzi, A., Panagos, P., Yigini, Y., Dunbar, M.B., Gardi, C., Montanarella, L., Ballabio, C., 2016. A knowledge-based approach to estimating the magnitude and spatial patterns of potential threats to soil biodiversity. Science of the Total Environment 545, 11–20. https://doi.org/10.1016/j.scit....
 
44.
Page, A.L., Mille, R.H., Keeney, D.R. (ED.), 1982. Methods of soil analysis. Part 2 (2nd edition). Agronomy monograph 9. ASA and SSSA, Madison, WI, 591–592.
 
45.
Pelosi, C., Bertrand, M., Roger-Estrade, J., 2009. Earthworm community in conventional, organic and direct seeding with living mulch cropping systems. Agronomy for Sustainable Development 29(2), 287–295. https://doi.org/10.1051/agro/2....
 
46.
Penning, K.A., Wrigley, D.M., 2018. Aged Eisenia fetida earthworms exhibit decreased reproductive success. Invertebrate reproduction & development 62(2), 67-73. https://doi.org/10.1080/079242....
 
47.
Ponge, J.F., Pérès G., Guernion M., Ruiz-Camacho N., Cortet J., Pernin C., Villenave C., Chaussod R., Martin-Laurent F., Bispo A., Cluzeau D., 2013. The impact of agricultural practices on soil biota: a regional study. Soil Biology and Biochemistry 67, 271–284.
 
48.
Richter, A., Huallacháin, D.Ó., Doyle, E., Clipson, N., Van Leeuwen, J.P., Heuvelink, G.B., Creamer, R.E., 2018. Linking diagnostic features to soil microbial biomass and respiration in agricultural grassland soil: a large‐scale study in Ireland. European Journal of Soil Science 69(3), 414-428. https://doi.org/10.1111/ejss.1....
 
49.
Rutgers, M., Orgiazzi, A., Gardi, C., Römbke, J., Jänsch, S., Keith, A.M., Neilson, R., Boag, B., Schmidt, O., Murchie, A.K. and Blackshaw, R.P., 2016. Mapping earthworm communities in Europe. Applied Soil Ecology 97, 98–111. https://doi.org/10.1016/j.apso....
 
50.
Semenov, M.V., Chernov, T.I., Tkhakakhova, A.K., Zhelezova, A.D., Ivanova, E.A., Kolganova, T.V., Kutovaya, O.V., 2018. Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century. Applied Soil Ecology 127, 8–18. https://doi.org/10.1016/j.apso....
 
51.
Soil Survey Division Staff, 1993. soil survey manual, USDA Handbook, 18: 315.
 
52.
Solly, E.F., Schöning, I., Boch, S., Kandeler, E., Marhan, S., Michalzik, B., Müller, J., Zscheischler, J., Trumbore, S.E., Schrumpf, M., 2014. Factors controlling decomposition rates of fine root litter in temperate forests and grasslands. Plant and Soil 382(1-2), 203–218. . https://doi.org/10.1007/s11104....
 
53.
Stępniewska, H., Uzarowicz, Ł., Błońska, E., Kwasowski, W., Słodczyk, Z., Gałka, D., Hebda, A., 2020. Fungal abundance and diversity as influenced by properties of Technosols developed from mine wastes containing iron sulphides: A case study from abandoned iron sulphide and uranium mine in Rudki, south-central Poland. Applied Soil Ecology 145. https://doi.org/10.1016/j.apso....
 
54.
Stone, D., Blomkvist, P., Hendriksen, N.B., Bonkowski, M., Jørgensen, H.B., Carvalho, F., Dunbar, M.B., Gardi, C., Geisen, S., Griffiths, R., Hug, A.S., 2016. A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe. Applied Soil Ecology 97, 3–11. https://doi.org/10.1016/j.apso....
 
55.
Tian, Q., Taniguchi, T., Shi, W.Y., Li, G., Yamanaka, N., Du, S., 2017. Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Scientific reports 7, 45289. https://doi.org/10.1038/srep45....
 
56.
Tsiafouli, M.A., Thébault E., Sgardelis S.P., De Ruiter P.C., Van Der Putten W.H., Birkhofer K., Hemerik L., De Vries F.T., Bardgett R.D., Brady M.V., Bjornlund L., 2015. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology 21(2), 973–985. https://doi.org/10.1111/gcb.12....
 
57.
Turbé, A., De Toni, A., Benito, P., Lavelle, P., Lavelle, P., Camacho, N.R., Van Der Putten, W.H., Labouze, E., Mudgal, S., 2010. Soil biodiversity: functions, threats and tools for policy makers.
 
58.
Van Leeuwen, J.P., Djukic, I., Bloem, J., Lehtinen, T., Hemerik, L., de Ruiter, P.C., Lair, G.J., 2017. Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. European Journal of Soil Biology 79, 14–20. https://doi.org/10.1016/j.ejso....
 
59.
Varga, J., Kanianska, R., Spišiak, J., 2018. Impact of land use and geological conditions on selected physical soil properties in relation to the earthworm abundance and biomass along an altitudinal gradient in Slovakia. Soil Science Annual 69(3),160–168. https://doi.org/10.2478/ssa-20....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top