ORIGINAL PAPER
The influence of geological formations on soil characteristics and quality in the southeast region of Pacitan Regency, Indonesia
More details
Hide details
1
Faculty of Agriculture, Department of Soil Science, Sebelas Maret University, Indonesia
2
Faculty of Agriculture, Undergraduate Program of Soil Science, Sebelas Maret University, Indonesia
Submission date: 2023-05-31
Final revision date: 2023-10-10
Acceptance date: 2023-11-17
Online publication date: 2023-11-17
Publication date: 2023-11-17
Corresponding author
Rahayu Rahayu
Faculty of Agriculture, Department of Soil Science, Sebelas Maret University, Surakarta, Indonesia
Soil Sci. Ann., 2023, 74(3)175383
KEYWORDS
ABSTRACT
The south eastern region of Pacitan Regency, East Java, Indonesia, is directly facing opposite the direction of the Indo-Australian plate movement, and has a diverse geological structure with different rocks occurring on land surface. This research aims to determine the influence of geological formations on soil characteristics and quality and the limiting factors of soil quality. Soil samples were taken from 40 sampling points from 10 geological formations from the topsoil (tillage layer) at a 0–30 cm depth. The number of sample points is adjusted to the area of the geological formation, where the wider the geological formation, the more samples are taken. Soil characteristics data were analysed using Anova test and Duncan test to get information on the influence of geological formations on soil characteristics. Pearson correlation test and principal component analysis (PCA) were used to calculate the soil quality index, and the Kruskal-Wallis test to analyse the influence of geological formations on soil quality. The result shows that the soil mineral composition is mostly inherited from andesitic-basaltic parent rocks which has experienced weathering. Geological formation has an influence on bulk density, soil water content, porosity, cation exchange capacity and soil organic carbon content. The soil quality index value for various geological formations is in the range of 0.31–0.39, so it is included in the low to medium class. Jaten Formation and the Watupatok Formation do not have limiting factor on soil quality, base saturation (BS) is a limiting factor in Oyo Formation, and soil organic carbon (SOC) and total nitrogen (TN) are limiting factors in almost all geological formations..In conclusion, geological formations significantly influence several soil characteristic parameters but are not the dominant factor determining soil quality.
REFERENCES (96)
1.
Acton, D.F., Padbury, G.A., 1993. A conceptual framework for soil quality assessment and monitoring. A Program to Assess and Monitor Soil Quality in Canada: Soil Quality Evaluation Summary, 201.
http://agrienvarchive.ca/nscp/....
2.
Adam, M., Ibrahim, I., Sulieman, M., Zeraatpisheh, M., Mishra, G., Brevik, E.C., 2021. Predicting soil cation exchange capacity in entisols with divergent textural classes: the case of Northern Sudan Soils. Air, Soil and Water Research 14, 11786221211042380.
https://doi.org/10.1177/117862....
3.
Aini, L., Mulyono, M., Hanudin, E., 2016. Mineral mudah lapuk material piroklastik Merapi dan potensi keharaannya bagi tanaman. Planta Tropika: Journal of Agro Science 4(2), 84–94. (in Indonesian with English abstract).
https://doi.org/10.18196/pt.20....
4.
Aji, H.B., Teapon, A., 2019. Pengaruh batuan induk dan kimia tanah terhadap potensi kesuburan tanah di Kabupaten Kepulauan Sula, Provinsi Maluku Utara. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian 22(3), 343–353. (in Indonesian with English abstract).
5.
Al Khoury, I., Boithias, L., Labat, D., 2023. A review of the application of the soil and water assessment tool (SWAT) in karst watersheds. Water (Switzerland) 15(5).
7.
Anderson, D. W., 1988. The effect of parent material and soil development on nutrient cycling in temperate ecosystems. Biogeochemistry 5(1), 71–97.
https://doi.org/10.1007/BF0218....
8.
Andrés, P., Doblas-Miranda, E., Silva-Sánchez, A., Mattana, S., and Font, F., 2022. Physical, chemical, and biological indicators of soil quality in mediterranean vineyards under contrasting farming schemes. Agronomy 12(11), 1–19.
https://doi.org/10.3390/agrono....
9.
Andrews, S.S., Karlen, D.L., Mitchell, J.P., 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems and Environment 90(1), 25–45.
https://doi.org/10.1016/S0167-....
10.
Andrews, S.S., Carroll, C.R. 2001. Designing a soil quality assessment tool for sustainable. Ecological Society of America 11(6), 1573–1585.
11.
Andrews, S.S., Karlen, D.L., Cambardella, C.A., 2004. The soil management assessment framework. Soil Science Society of America Journal 68(6), 1945–1962.
https://doi.org/10.2136/sssaj2....
12.
Antonius, K., 2019. Perbaikan tanah untuk meningkatkan efektivitas dan efisiensi pemupukan berimbang dan produktivitas lahan kering masam. Jurnal Sumberdaya Lahan 13(1), 27–40. (in Indonesian with English abstract).
13.
Bader, B.R., Taban, S.K., Fahmi, A.H., Abood, M. A., Hamdi, G.J., 2021. Potassium availability in soil amended with organic matter and phosphorous fertiliser under water stress during maize (Zea mays L) growth. Journal of the Saudi Society of Agricultural Sciences 20(6), 390–394.
https://doi.org/10.1016/j.jssa....
14.
Balittanah., 2009. Analisis kimia tanah, tanaman, air, dan pupuk. Balai Penelitian Tanah. Bogor, Indonesia. (in Indonesian with English abstract).
15.
Banjarnahor, N., Hindarto, K.S., Fahrurrozi., 2018. Hubungan kelerengan dengan kadar air tanah, pH tanah, dan penampilan jeruk gerga di Kabupaten Lebong. Jurnal Ilmu-Ilmu Pertanian Indonesia 20(1), 13–18. (in Indonesian with English abstract).
16.
Bastida, F., Eldridge, D.J., García, C., Kenny P,G., Bardgett, R.D., Delgado-Baquerizo, M., 2021. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME Journal 15(7), 2081–2091.
https://doi.org/10.1038/s41396....
17.
Bowles, T.M., Jilling, A., Morán-Rivera, K., Schnecker, J., Grandy, A.S., 2022. Crop rotational complexity affects plant-soil nitrogen cycling during water deficit. Soil Biology and Biochemistry 166.
https://doi.org/10.1016/j.soil....
19.
Bremner, J.M. 1996. Nitrogen-Total. In Methods of Soil Analysis (pp. 1085–1121).
https://doi.org/https://doi.or..., E.K., Bongiorno, G., Bai, Z., Creamer, R.E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J.W., Brussaard, L., 2018. Soil quality – A critical review. Soil Biology and Biochemistry 120, 105–125.
https://doi.org/10.1016/j.soil....
20.
Cantú, M.P., Becker, A., Bedano, J.C., Schiavo, H.F., 2007. Evaluación de la calidad de suelos mediante el uso de inidicadores e índices. Ciencia Del Suelo 25(2), 173–178.
21.
Chaudhuri, S., McDonald, L.M., Skousen, J., Pena-Yewtukhiw, E.M. 2013. Soil organic carbon molecular properties: effects of time since reclamation in a minesoil chronosequence. Land Degradation and Development 26(3), 237–248.
https://doi.org/https://doi.or....
22.
Chen, Q., Zhang, P., Hu, Z., Li, S., Zhang, Y., Hu, L., Zhou, L., Lin, B., & Li, X. 2022. Soil organic carbon and geochemical characteristics on different rocks and their significance for carbon cycles. Frontiers in Environmental Science 9, 1–10.
https://doi.org/10.3389/fenvs.....
23.
Chowdhury, S., Bolan, N., Farrell, M., Sarkar, B., Sarker, J.R., Kirkham, M.B., Hossain, M. Z., Kim, G.-H.,2021. Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Advances in Agronomy 166, 131–196.
https://doi.org/https://doi.or....
24.
Corsi, S., Fredrich, T., Kassam, A., Pisante, M., de Moraes Sà, J., 2012. Soil organic carbon accumulation and greenhouse gas emission reductions from conservation agriculture. Food and Agriculture Organization of the United Nations.
25.
da Silva, R.J.A.B., da Silva, Y.J.A.B., van Straaten, P., do Nascimento, C.W.A., Biondi, C.M., da Silva, Y.J.A.B., de Araújo, F.J.C., 2022. Influence of parent material on soil chemical characteristics in a semi-arid tropical region of Northeast Brazil. Environmental Monitoring and Assessment 194(5), 331.
https://doi.org/10.1007/s10661....
26.
Datta, S., Taghvaeian, S., Stivers, J., 2017. Understanding soil water content and thresholds for irrigation management managing irrigations based on soil water content managing irrigations based on VWC data managing irrigations based on SMP data. Oklahoma Cooperative Extension Service, BAE-1537-1-BAE-1537-7.
http://osufacts.okstate.edu.
27.
Djodjic, F., Bieroza, M., Bergström, L., 2021 Land use, geology and soil properties control nutrient concentrations in headwater streams. Science of the Total Environment 772, 145108.
https://doi.org/10.1016/j.scit....
28.
Doran, J.W., Parkin, T.B., 1996. Quantitative indicators of soil quality: A minimum data set. Methods for Assessing Soil Quality, 25–37.
https://doi.org/10.2136/sssasp....
29.
Drobnik, T., Greiner, L., Keller, A., Grêt-Regamey, A., 2018. Soil quality indicators – From soil functions to ecosystem services. Ecological Indicators 94, 151–169.
https://doi.org/10.1016/j.ecol....
30.
González-Fontes, A., Navarro-Gochicoa, M.T., Ceacero, C.J., Herrera-Rodríguez, M.B., Camacho-Cristóbal, J.J., Rexach, J., 2017. Chapter 9 - Understanding calcium transport and signaling, and its use efficiency in vascular plants. Plant Macronutrient Use Efficiency (pp. 165–180). Academic Press.
https://doi.org/https://doi.or....
31.
Gruber, F.E., Baruck, J., Mair, V., Geitner, C., 2019. From geological to soil parent material maps - A random forest-supported analysis of geological map units and topography to support soil survey in South Tyrol. Geoderma 354, 113884.
https://doi.org/10.1016/j.geod....
32.
Haberern, J., 1992. Coming full circle—The new emphasis on soil quality. American Journal of Alternative Agriculture 7(1–2), 3–4.
https://doi.org/DOI: 10.1017/S0889189300004355.
33.
Hall, R., 2012. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571, 1–41.
https://doi.org/10.1016/j.tect....
35.
Igwe, O., Egbueri, J.C., 2018. The characteristics and the erodibility potentials of soils from different geologic formations in Anambra State, Southeastern Nigeria. Journal of the Geological Society of India 92(4), 471–478.
https://doi.org/10.1007/s12594....
36.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
38.
Karlen, D.L., Wollenhaupt, N.C., Erbach, D.C., Berry, E.C., Swan, J.B., Eash, N.S., Jordahl, J.L., 1994. Long-term tillage effects on soil quality. Soil and Tillage Research 32(4), 313–327.
https://doi.org/10.1016/0167-1....
41.
Lal, R., 1994. Methods and guidelines for assessing sustainable use of soil and water resources in the tropics. 21, 78.
42.
Legaz, V.B., Maia, D.D., Teixeira, R.F.M., Antón, A., Putman, B., Sala, S., 2017. Soil quality, properties, and functions in life cycle assessment: an evaluation of models. Journal of Cleaner Production 140, 502–515.
https://doi.org/https://doi.or....
43.
Lehmann, J., Bossio, D.A., Kögel-Knabner, I., Rillig, M.C., 2020. The concept and future prospects of soil health. Nature Reviews Earth and Environment 1(10), 544–553.
https://doi.org/10.1038/s43017....
44.
Liu, J., Wu, L., Chen, D., Yu, Z., Wei, C., 2018. Development of a soil quality index for Camellia oleifera forestland yield under three different parent materials in Southern China. Soil and Tillage Research 176, 45–50.
https://doi.org/10.1016/j.stil....
45.
Mao, X., Van Zwieten, L., Zhang, M., Qiu, Z., Yao, Y., Wang, H., 2020. Soil parent material controls organic matter stocks and retention patterns in subtropical China. Journal of Soils and Sediments 20(5), 2426–2438.
https://doi.org/10.1007/s11368....
46.
Mancini, M., Silva, S.H.G., Teixeira, A.F.D ., Guilherme, L R.G., Curi, N., 2020. Soil parent material prediction for Brazil via proximal soil sensing. Geoderma Regional 22.
https://doi.org/10.1016/j.geod....
48.
Mangungsong, A., Soemarsono, Fatardho, Z., 2020. Pemanfaatan mikroba tanah dalam pembuatan pupuk organik serta peranannya terhadap tanah aluvial dan pertumbuhan bibit tanaman kakao. Indonesian Journal of Agronomy 47(3), 318–325. (in Indonesian with English abstract).
https://doi.org/10.24831/jai.v....
49.
Meng, C., Yang, W., Wang, D., Hao, Z., Li, M., 2023. Development and testing of vehicle-mounted soil bulk density detection system. Measurement: Journal of the International Measurement Confederation 211, 112604.
https://doi.org/10.1016/j.meas....
50.
Mocek, A., Owczarzak, W., 2011. Parent material and soil physical properties. In Encyclopedia of Agrophysics (Encycloped, pp. 543–547). Springer Netherlands.
https://doi.org/10.1007/978-90....
51.
Mukhopadhyay, S., Maiti, S.K., Masto, R.E., 2014. Development of mine soil quality index (MSQI) for evaluation of reclamation success: A chronosequence study. Ecological Engineering 71, 10–20.
https://doi.org/10.1016/j.ecol....
52.
Mukhopadhyay, S., Masto, R.E., Tripathi, R.C., Srivastava, N.K., 2019. Chapter 14 - Application of soil quality indicators for the phytorestoration of mine spoil dumps. In Phytomanagement of Polluted Sites (pp. 361–388). Elsevier.
https://doi.org/https://doi.or....
53.
Nahm, F.S., 2016. Nonparametric statistical tests for the continuous data: The basic concept and the practical use. Korean Journal of Anesthesiology 69(1), 8–14.
https://doi.org/10.4097/kjae.2....
55.
Noviyanto, A., Purwanto, P., Minardi, S., Supriyadi, S., 2017. The assessment of soil quality of various age of land reclamation after coal mining: a chronosequence study. Journal of Degraded and Mining Lands Management 5(1), 1009–1018.
https://doi.org/10.15243/jdmlm....
56.
Okewale, I.A., Coop, M.R., 2017. A study of the effects of weathering on soils derived from decomposed volcanic rocks. Engineering Geology, 222, 53–71.
https://doi.org/10.1016/j.engg....
57.
Oliveira, F.J.d., Barrozo, M.V.d., Pereira, M.G., 2022. Environmental factors and land use changes controlling the availability of phosphorus in dryland soils. Journal of Arid Environments 202.
https://doi.org/10.1016/j.jari....
58.
Olsen, S.R. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (pp. 1–19). United States Department of Agriculture.
59.
Osman, K.T., 2012. Soils : Principles, properties, and management. In Springer.
60.
Ouimet, R., Camiré, C., Furlan, V., 1996. Effect of soil base saturation and endomycorrhization on growth and nutrient status of sugar maple seedlings. Canadian Journal of Soil Science 76(2), 109–115.
https://doi.org/10.4141/cjss96....
61.
Pacitan district Government. (2005). Buku putih sanitasi Kabupaten Pacitan. Pacitan district government. Pacitan, Indonesia. (in Indonesian with English abstract).
62.
Pichler, H., Schmitt-Riegraf, C., 1997. Opaque minerals and substances BT - Rock-forming Minerals in Thin Section. In Rock-forming Minerals in Thin Section (pp. 30–34). Springer Netherlands.
https://doi.org/10.1007/978-94....
63.
Portela, E., Monteiro, F., Fonseca, M., Abreu, M.M., 2019. Effect of soil mineralogy on potassium fixation in soils developed on different parent material. Geoderma 343, 226–234.
https://doi.org/10.1016/j.geod....
64.
Purwanto, S., Abdul, G.R., Sukarman, S., 2020. Karakteristik mineral tanah berbahan vulkanik dan potensi kesuburannya di Pulau Jawa. Jurnal Sumberdaya Lahan 12(2), 83.
https://doi.org/10.21082/jsdl.... (in Indonesian with English abstract).
65.
Putri, O.H., Utami, S.R., Kurniawan, S., 2019. Sifat kimia tanah pada berbagai penggunaan lahan di UB Forest. Jurnal Tanah dan Sumberdaya Lahan 6(1), 1075–1081.
https://doi.org/10.21776/ub.jt... (in Indonesian with English abstract).
66.
Rachman, L.M., 2021. Using soil quality index plus to assess soil conditions and limiting factors for dryland farming. Sains Tanah 17(2), 100–107.
https://doi.org/10.20961/STJSS....
67.
Rawal, A., Chakraborty, S., Li, B., Lewis, K., Godoy, M., Paulette, L., Weindorf, D.C., 2019. Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer. Geoderma 338, 375–382.
https://doi.org/10.1016/j.geod....
69.
Saint-Laurent, D., Paradis, R., Drouin, A., Gervais-Beaulac, V., 2016. Impacts of floods on organic carbon concentrations in alluvial soils along hydrological gradients using a digital elevation model (DEM). Water (Switzerland) 8(5).
https://doi.org/10.3390/w80502....
70.
Samoedra, H., Gafoer, S., Tjokrosapoetro, S., 1992. Geological map of Pacitan sheet, Java.
71.
Satyana, A.H., 2007. Central Java, Indonesia – a “Terra incognita” in petroleum exploration: new considerations on the tectonic evolution and petroleum implications. In Proceedings of Indonesian Petroleum Association (Issue Thirty-First Annual Convention and Exhibition).
https://doi.org/https://doi.or....
72.
Schoonover, J.E., Crim, J.F., 2015. An introduction to soil concepts and the role of soils in watershed management. Journal of Contemporary Water Research and Education 154(1), 21–47.
https://doi.org/10.1111/j.1936....
73.
Shaheb, M.R., Venkatesh, R., Shearer, S.A., 2021. A review on the effect of soil compaction and its management for sustainable crop production. Journal of Biosystems Engineering 46(4), 417–439.
https://doi.org/10.1007/s42853....
74.
Shao, G., Ai, J., Sun, Q., Hou, L., Dong, Y. 2020. Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecological Indicators 115, 106439.
https://doi.org/10.1016/j.ecol....
75.
Simfukwe, P., Hill, P.W., Emmett, B.A., Jones, D.L., 2021. Identification and predictability of soil quality indicators from conventional soil and vegetation classifications. PLoS ONE 16(10), 1–22.
https://doi.org/10.1371/journa....
76.
Simons, W.J.F., Socquet, A., Vigny, C., Ambrosius, B.A.C., Haji, A.S., Promthong, C., Subarya, C., Sarsito, D.A., Matheussen, S., Morgan, P., Spakman, W., 2007. A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries. Journal of Geophysical Research: Solid Earth 112(B6).
https://doi.org/https://doi.or....
77.
Singh, B., Schulze, D.G., 2015. Soil minerals and plant nutrition. Nature Education Knowledge 6(1), 1.
78.
Smith, J.L., Doran, J.W., 1997. Measurement and use of pH and electrical conductivity for soil quality analysis. In Methods for Assessing Soil Quality (pp. 169–185).
https://doi.org/https://doi.or....
79.
Soil Survey Division Staff., 2017. Soil survey manual. In Soil Conservation Service Volume Handbook 18 (USDA Handbook). USDA–NRCS.
https://doi.org/10.2307/123373....
80.
Sun, J., Li, W., Li, C., Chang, W., Zhang, S., Zeng, Y., Zeng, C., Peng, M., 2020. Effect of different rates of nitrogen fertilization on crop yield, soil properties and leaf physiological attributes in banana under subtropical Regions of China. Frontiers in Plant Science 11, 1–11.
https://doi.org/10.3389/fpls.2....
81.
Supriyadi, Hartati, S., Machfiroh, N., Ustiatik, R., 2016. Soil quality index in the upstream of bengawan solo river basin according to the soil function in nutrient cycling based on soybean production in agroforestry. Agrivita 38(1), 55–63.
https://doi.org/10.17503/agriv....
82.
Toure, D., Ge, ji-wen, Zhou, J., 2015. Interactions between soil characteristics, environmental factors, and plant species abundance: A case study in the karst mountains of Longhushan Nature Reserve, southwest China. Journal of Mountain Science, 12(4), 943–960.
https://doi.org/10.1007/s11629....
84.
Verrina, G.P., Anugrah, D.D., sarino., 2013. Analisa runoff pada sub Das Lematang Hulu. Jurnal Teknik Sipil Dan Lingkungan 1(1), 23–31. (in Indonesian with English abstract).
85.
Wakeel, A., Ishfaq, M., 2022. Potassium dynamics in soils. in: potash use and dynamics in agriculture. In Springer (pp. 7–17). Springer Singapore.
https://doi.org/10.1007/978-98....
86.
Wander, M.M., Walter, G.L., Nissen, T.M., Bollero, G.A., Andrews, S.S., Cavanaugh-Grant, D.A., 2002. Soil quality: Science and process. Agronomy Journal 94(1), 23–32.
87.
Wang, H., Gao, J.E., Li, X.H., Zhang, S.L., Wang, H.J., 2015. Nitrate accumulation and leaching in surface and ground water based on simulated rainfall experiments. PLoS ONE 10(8), 1–18.
https://doi.org/10.1371/journa....
88.
Wiesmeier, M., Poeplau, C., Sierra, C.A., Maier, H., Frühauf, C., Hübner, R., Kühnel, A., Spörlein, P., Geuß, U., Hangen, E., Schilling, B., Von Lützow, M., Kögel-Knabner, I., 2016. Projected loss of soil organic carbon in temperate agricultural soils in the 21 st century: Effects of climate change and carbon input trends. Scientific Reports 6, 1–17.
https://doi.org/10.1038/srep32....
89.
Wilson, M.J., 2019. The importance of parent material in soil classification: A review in a historical context. Catena 182, 104131.
https://doi.org/10.1016/J.CATE....
91.
Xu, L., He, N., Yu, G., 2016. Methods of evaluating soil bulk density: Impact on estimating large scale soil organic carbon storage. Catena 144, 94–101.
https://doi.org/10.1016/j.cate....
92.
Zalamea, M., González, G., Lodge, D.J., 2016. Physical, chemical, and biological properties of soil under decaying wood in a tropicalwet forest in Puerto Rico. Forests 7(8), 1–18.
https://doi.org/10.3390/f70801....
93.
Zhang, Y., Wu, W., Id, H.L., 2019. Factors affecting variations of soil pH in different horizons in hilly regions. PloS ONE 14(6), 1–13.
94.
Zhang, Z., Han, J., Yin, H., Xue, J., Jia, L., Zhen, X., Chang, J., Wang, S., Yu, B., 2022. Assessing the effects of different long-term ecological engineering enclosures on soil quality in an alpine desert grassland area. Ecological Indicators 143.
https://doi.org/10.1016/j.ecol....
95.
Zhao, H., Jia, J., Zhao, Q., Wang, J., Gao, Y., Huang, Y., Chen, G., 2022. Soil organic carbon stabilization and associated mineral protection in typical coastal wetlands under different hydrologic conditions. Frontiers in Marine Science 9, 1–13.
https://doi.org/10.3389/fmars.....
96.
Zhou, Q., Zhu, A.X., Yan, W., Sun, Z., 2022. Impacts of forestland vegetation restoration on soil moisture content in humid karst region: A case study on a limestone slope. Ecological Engineering 180, 106648.
https://doi.org/10.1016/j.ecol....