PL EN
PRACA PRZEGLĄDOWA
Gleby technogeniczne - Gleby Roku 2020 w Polsce. Koncepcja, właściwości i klasyfikacja gleb technogenicznych w Polsce
 
Więcej
Ukryj
1
Wrocław University of Environmental and Life Sciences, Institute of Soil Science and Environmental Protection, Grunwaldzka Str. 53, 50-375 Wrocław, Poland
 
2
University of Zielona Gora, Institute of Environmental Engineering, Department of Geoengineering and Reclamation, Prof. Z. Szafrana Str. 15, 65-516 Zielona Góra, Poland
 
3
Nicolaus Copernicus University in Toruń, Faculty of Earth Sciences and Spatial Management, Department of Soil Science and Landscape Management, Lwowska St. 1, 87-100, Toruń, Poland
 
4
Warsaw University of Life Sciences – SGGW, Institute of Agriculture, Department of Soil Science, Nowoursynowska Str. 159, building no. 37, 02-776 Warszawa, Poland
 
 
Data nadesłania: 30-09-2020
 
 
Data ostatniej rewizji: 01-11-2020
 
 
Data akceptacji: 11-12-2020
 
 
Data publikacji online: 19-01-2021
 
 
Data publikacji: 19-01-2021
 
 
Autor do korespondencji
Cezary Kabała   

Instytut Nauk o Glebie i Ochrony Środowiska, Uniwersytet Przyrodniczy we Wrocławiu, Norwida 25, 50-375, Wrocław, Polska
 
 
Soil Sci. Ann., 2020, 71(4), 267-280
 
SŁOWA KLUCZOWE
STRESZCZENIE
Polskie Towarzystwo Gleboznawcze wybrało gleby technogeniczne jako Gleby Roku 2020 w celu podkreślenia rosnącego zrozumienia funkcji gleb stworzonych lub silnie przekształconych przez człowieka w aglomeracjach miejskich i przemysłowych, zamieszkanych przez większość populacji. Gleby technogeniczne są istotnie zróżnicowane pod względem morfologii i właściwości fizyko-chemicznych, w zależności od rodzaju wpływu człowieka lub rodzaju antropogenicznego materiału macierzystego. Dlatego gleby technogeniczne mogą tworzyć wysokoproduktywne siedliska ogrodowe lub parkowe, lub, alternatywnie, nieproduktywne lub nawet toksyczne stanowiska, które pilnie wymagają remediacji. Artykuł jest wprowadzeniem do (a) historii definiowania i klasyfikacji gleb technogenicznych w Polsce, (b) współczesnych koncepcji gleb technogenicznych w Systematyce Gleb Polski i najważniejszych cech diagnostycznych, oraz (c) zwięzłym przeglądem podtypów i odmian gleb technogenicznych, włączając informacje o nich w dotychczas opublikowanych pracach badawczych oraz korelacje z klasyfikacją FAO-WRB. Systematyka Gleb Polski (wydanie 6, 2019) rozszerzyła definicję gleby w taki sposób, aby możliwe było klasyfikowanie gleb na budynkach i innych budowlach oraz wprowadziła pojęcia: artefaktów, geomembrany, litej warstwy technogenicznej, głębokiego materiału nasypanego oraz głębokiego wymieszania jako właściwości diagnostycznych istotnych dla wyróżniania i klasyfikacji gleb technogenicznych. W typie gleb technogenicznych wyróżniono siedem podtypów głównych, to jest ekranosole, urbisole, industriosole, edifisole, konstruktosole, aggerosole i turbisole, a także trzy podtypy uzupełniające: próchniczne, gruntowo-glejowe i opadowo-glejowe. Ponadto wprowadzono szereg odmian pozwalających na dodatkową charakterystykę cech użytkowych lub toksyczności gleb technogenicznych.
 
REFERENCJE (101)
1.
Blume, H.P., 1989. Classification of soils in urban agglomerations. Catena 16(3), 269–275.
 
2.
Blume, H.P., Runge, M., 1978. Genese und Ökologie innerstädtischer Böden aus Bauschutt. Z. Pflanzenernähr. Bodenkd., 141, 727–740.
 
3.
Burghardt, W., 1994. Soils in urban and industrial environments. Zeitschrift für Pflanzenernährung und Bodenkunde 157 (3), 205–214.
 
4.
Burghardt, W., Morel, J. L., Tahoun, S., Zhang, G. L., Shaw, R. K., Boularbah, A., Charzynski, P., Siebe, C., Kim, K. H. J., 2017. Activities of SUITMA: from origin to future. [In:] Lewin, M.J., Kim, K.-H.J., Morel, J.L., Burghardt, W., Charzyński, P, Shaw, R.K., (Eds.), Soils within cities. Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher, pp. 123–128.
 
5.
Charzyński, P., Bednarek, R., Błaszkiewicz, J., 2011a. Morphology and properties of Ekranic Technosols in Toruń and Cluj-Napoca. Roczniki Gleboznawcze – Soil Science Annual 62(2), 48–53 (in Polish with English abstract).
 
6.
Charzyński, P., Bednarek, R., Greinert, A., Hulisz, P., Uzarowicz, Ł., 2013c. Classification of technogenic soils according to WRB system in the light of Polish experiences. Soil Science Annual 64(4), 145–150.
 
7.
Charzyński, P., Bednarek, R., Świtoniak, M., Żołnowska, B., 2011b. Ekranic Technosols and Urbic Technosols of Toruń Necropolis. Geologia 53(4), 179–185.
 
8.
Charzyński, P., Galbraith, J.M., Kabała, C., Kühn, D., Prokofeva, T.V., Vasenev, V.I., 2017a. Classification of urban soils. [In:] Lewin, M.J., Kim, K.-H.J., Morel, J.L., Burghardt, W., Charzyński, P, Shaw, R.K., (Eds.), Soils within cities. Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher, 93–106.
 
9.
Charzyński, P., Hulisz, P., 2017. The case of Toruń, Poland. [In:] Lewin, M.J., Kim, K.-H.J., Morel, J.L., Burghardt, W., Charzyński, P, Shaw, R.K., (Eds.), Soils within cities. Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher, pp. 123–128.
 
10.
Charzyński, P., Hulisz, P., Bednarek, R., (eds.), 2013a. Technogenic Soils of Poland. Polish Society of Soil Science, Toruń.
 
11.
Charzyński, P., Hulisz, P., Bednarek, R., Piernik, A., Winkler, A., Chmurzyński, M., 2015. Edifisols – a new soil unit of technogenic soils. Journal of Soils and Sediments 15(8), 1675–1686.
 
12.
Charzyński, P., Markiewicz, M., Świtoniak, M., (eds.), 2013b. Technogenic Soils Atlas. Polish Society of Soil Science, Toruń.
 
13.
Czaban, S., Fiałkiewicz, W., Kabała, C., 2007. Potential impact of tailings pond on crop and forest production. Proceedings of the Third International Conference on Environmental Modelling and Simulation (IASTED), EMS, Honolulu, USA, 103-108.
 
14.
Czerwiński, Z., Pracz, J., 1990. Gleby i kierunki ich transformacji w warunkach presji urbanistycznej. Centralny Program Badań Podstawowych “Funkcjonowanie układów ekologicznych w warunkach zurbanizowanych”. Systematyka i cechy gleb miejskich. Wyd. SGGW, 58, 41–57.
 
15.
Dobrzański, B., Borek, S., Czarnowska, K., Czerwiński, Z., Czępińska-Kamińska, D., Kępka, M., Konecka-Betley, K., Kusińska, A., Mazurek, A., Pracz, J., 1975a. Badania gleboznawcze Parku Łazienkowskiego w Warszawie w nawiązaniu do ochrony środowiska. Cz. 1. Charakterystyka gleb. Roczniki Nauk Rolniczych, Ser. A, 101(1), 101–140.
 
16.
Dobrzański, B., Czarnowska, K., Czerwiński, Z., Konecka-Betley, K., Pracz, J., 1975b. Badania gleboznawcze Parku Łazienkowskiego w Warszawie w nawiązaniu do ochrony środowiska. Cz. 2. Wpływ aglomeracji miejskiej na gleby i rośliny. Roczniki Nauk Rolniczych, Ser. A, 101(1), 141–158.
 
17.
Dobrzański, B., Czerwiński, Z., Pracz, J., Mazurek, A., 1977. Procesy glebowe i właściwości gleb aglomeracji miejskiej na przykładzie Ogrodu Saskiego w Warszawie. Człowiek i Środowisko 1, 33–44.
 
18.
Dradrach, A., Szopka, K., Karczewska, A., 2019. Ecotoxicity of pore water in soils developed on historical arsenic mine dumps: The effects of forest litter. Ecotoxicology and environmental safety 181, 202-213.
 
19.
Dudal, R., 2005. The sixth factor of soil formation. Eurasian Soil Science C/C of Pochvovedenie, 38, S60.
 
20.
Effland, W. R., Pouyat, R. V., 1997. The genesis, classification, and mapping of soils in urban areas. Urban Ecosystems 1, 217-228.
 
21.
Genetyczna Klasyfikacja Gleb Polski, 1959. Roczniki Gleboznawcze – Soil Science Annual 7(2), 1-131. (in Polish with English summary).
 
22.
Gilewska, M., Otremba, K., Kozłowski, M., 2020. Physical and chemical properties of ash from thermal power station combusting lignite. A case study from central Poland. Journal of Elementology 25(1), 279-295.
 
23.
Gołębiowska, J., Bender, J., 1983. Czynniki warunkujące powstawanie poziomu próchniczego w procesie rekultywacji zwałowisk. Archiwum Ochrony Środowiska 1-2, 65–75.
 
24.
Greinert, A., 2003. Studies on soils of the Zielona Góra urban area. University of Zielona Góra Publ. House, Zielona Góra (in Polish).
 
25.
Greinert, A., 2015. The heterogeneity of urban soils in the light of their properties. Journal of Soils and Sediments 15(8), 1725–1737.
 
26.
Greinert, A., 2017. Functions of soils in the urban environment, [In:] Lewin, M.J., Kim, K.-H.J., Morel, J.L., Burghardt, W., Charzyński, P, Shaw, R.K., (Eds.), Soils within cities. Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher, 43–52.
 
27.
Greinert, A., Fruzińska, R., Kostecki, J., 2013a. Urban soils in Zielona Góra, [In:] Charzyński, P., Hulisz, P., Bednarek, R., (eds.) Technogenic soils of Poland. Toruń, Polish Society of Soil Science, 31–54.
 
28.
Greinert, A., Drab, M., Kostecki, J., Fruzińska, R., 2013b. Post-mining soils in Łęknica region, [In:] Charzyński, P., Hulisz, P. Bednarek, R. (eds.), Technogenic soils of Poland. Toruń, Polish Society of Soil Science, 233–253.
 
29.
Greinert, H., Drab, M., 2000. Physical properties of the soil formed as a result of recultivation of sand-pits in the Bóbr river valley. Acta Agrophysica 35, 77–84.
 
30.
Gwiżdż, M., Pruchniewicz, D., Kabała, C., Szopka, K., 2010. Kierunki docelowego zagospodarowania składowisk odpadów wydobywczych na przykładzie wybranych obiektów Wałbrzyskiego i Rybnickiego Okręgu Węglowego. Przegląd Górniczy 66, 78-85.
 
31.
Hulisz, P. 2007. Proposals of systematics of Polish salt-affected soils. Roczniki Gleboznawcze – Soil Science Annual 58 (1/2), 1−10 (in Polish with English abstract).
 
32.
Hulisz, P., Charzyński, P., Greinert, A., 2018a. Urban soil resources of medium-sized cities in Poland: a comparative case study of Toruń and Zielona Góra. Journal of Soils and Sediments 18, 358–372.
 
33.
Hulisz, P., Michalski, A., Dąbrowski, M., Kusza, G., Łęczyński, L., 2015. Human-induced changes in the soil cover at the mouth of the Vistula River Cross-Cut. Soil Science Annual 66(2), 67–74.
 
34.
Hulisz, P., Pindral, S., Kobierski, M., Charzyński, P., 2018b. Technogenic layers in organic soils as a result of the impact of the soda industry. Eurasian Soil Science 51(10), 1133–1141.
 
35.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
 
36.
Jankowski, M., Bednarek, R., Jaworska, M., 2013. Soils constructed on the 19th century fortifications in Toruń. [In:] Charzyński, P., Hulisz, P., Bednarek, R., (Eds.), Technogenic soils of Poland. Polish Society of Soil Science, Toruń.
 
37.
Kabała, C., 2014. Systematyka gleb Polski - stan aktualny i dalszy rozwój. Soil Science Annual 65, 2, 91-98.
 
38.
Kabała, C., 2018. Rendzina (rędzina) – soil of the year 2018 in Poland. Introduction to origin, classification and land use of rendzinas. Soil Science Annual 69, 2, 63-74.
 
39.
Kabała, C., 2019. Chernozem (czarnoziem)–soil of the year 2019 in Poland. Origin, classification and use of chernozems in Poland. Soil Science Annual 70(3), 184-192.
 
40.
Kabała, C., Buczak, M., Gałka, B., Chodak, T., 2010. Anthropogenic transformations and classification of the soils in rural park in Wroclaw-Pawlowice. Soil Science Annual - Roczniki Gleboznawcze 61(4), 69-77.
 
41.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł., Waroszewski, J., 2019. Polish Soil Classification, 6th edition - principles, classification. Soil Science Annual 70(2), 71–97.
 
42.
Kabala, C., Chodak, T., Szerszen, L., Karczewska, A., Szopka, K., Fratczak, U., 2009. Factors influencing the concentration of heavy metals in soils of allotment gardens in the city of Wroclaw, Poland. Fresenius Environmental Bulletin 18(7), 1118-1124.
 
43.
Kabala, C., Galka, B., Jezierski, P., 2020. Assessment and monitoring of soil and plant contamination with trace elements around Europe's largest copper ore tailings impoundment. Science of The Total Environment, 738, 139918.
 
44.
Kabala, C., Galka, B., Labaz, B., Anjos, L., de Souza Cavassani, R., 2018. Towards more simple and coherent chemical criteria in a classification of anthropogenic soils: A comparison of phosphorus tests for diagnostic horizons and properties. Geoderma 320, 1-11.
 
45.
Kabała, C., Świtoniak, M., Charzyński, P., 2016. Correlation between the Polish Soil Classification (2011) and international soil classification system World Reference Base for Soil Resources (2015). Soil Science Annual 67(2), 88–100.
 
46.
Karczewska, A., Bogda, A., Gałka, B., Krajewski, J., 2005. Assessment of environmental hazards in the vicinity of polymetallic ore deposits Żeleźniak (Wojcieszów-Kaczawskie Mts, SW Poland). Wyd. Akademii Rolniczej we Wrocławiu, 262.
 
47.
Kaszubkiewicz, J., Ochman, D., Kasina, M., Kisiel, J., Nowacka, S., Szewczyk, A., 2003. Zasolenie gleb w rejonie zbiornika osadów poflotacyjnych „Żelazny Most”. Roczniki Gleboznawcze – Soil Science Annual 54(4), 91−102. (in Polish with English abstract).
 
48.
Komornicki, T., 1986. Soils of the Planty park in Kraków. Soil Science Annual - Roczniki Gleboznawcze 37(4), 187-200. (in Polish with English abstract).
 
49.
Konecka-Betley, K., Janowska, E., Łuniewska-Broda, J., Szpotański, M., 1984. Wstępna klasyfikacja gleb aglomeracji warszawskiej. Roczniki Gleboznawcze – Soil Science Annual 35(2), 151–163 (in Polish with English abstract).
 
50.
Kostecki, J., Greinert, A., Drab, M., Mik, Ł., 2020. Soil sealing on example of the Jędrzychów Residential Area in Zielona Góra, Poland. Civil and Environmental Engineering Reports 30(1), 53–63.
 
51.
Krupski, M., Kabala, C., Sady, A., Gliński, R., Wojcieszak, J., 2017. Double-and triple-depth digging and Anthrosol formation in a medieval and modern-era city (Wrocław, SW Poland). Geoarchaeological research on past horticultural practices. Catena 153, 9-20.
 
52.
Krzaklewski, W., Pietrzykowski, M. 2002. Selected physico-chemical properties of zinc and lead ore tailings and their biological stabilisation. Water Air and Soil Pollution 141(1-4), 125-142.
 
53.
Kubiëna, W., 1958. The classification of soils. Journal of Soil Science, 9(1), 9–19.
 
54.
Kusza, G., Gołuchowska, B., Szewczyk, M., 2016. Changes in physicochemical properties of soils in the area affected by lime industry. Ecological Chemistry and Engineering A 23(4), 433-442.
 
55.
Lehmann, A., 2006. Technosols and other proposals on urban soils for the WRB [World Reference Base for Soil Resources]. International agrophysics 20(2), 129-134.
 
56.
Lehmann, A., Stahr, K., 2007. Nature and significance of anthropogenic urban soils. Journal of Soils and Sediments 7(4), 247-260.
 
57.
Lewin, M.J., Kim, K.-H.J., Morel, J.L., Burghardt, W., Charzyński, P, Shaw, R.K., 20147. Soils within cities. Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher.
 
58.
Licznar, S.E, Licznar, M., Licznar, P., 2007. Monitoring środowiska: Badania pokrywy glebowej Parku Szczytnickiego we Wrocławiu. Inst. Badań Systemowych PAN, Badania Systemowe 53, 104 pp.
 
59.
Maciak, F., Liwski, S., Biernacka, E., 1974. Some physico-chemical and biochemical properties of the ash dumps after brown and hard coal. Roczniki Gleboznawcze – Soil Science Annual 25(3), 191–205 (in Polish with English abstract).
 
60.
Maciak, F., 1978. Effect of the seven-year recultivation on an ash dump of the Konin power plant on yielding of cocksfoot and some changes of soil. Roczniki Gleboznawcze – Soil Science Annual 29(3), 203–216 (in Polish with English abstract).
 
61.
Markiewicz, M., Hulisz, P., Charzyński, P., Piernik, A., 2018. Characteristics of soil organic matter of edifisols – An example of techno humus system. Applied Soil Ecology 123, 509–512.
 
62.
Mazurek, R., Kowalska, J., Gąsiorek, M., Setlak, M., 2016. Micromorphological and physico-chemical analyses of cultural layers in the urban soil of a medieval city—A case study from Krakow, Poland. Catena 141, 73-84.
 
63.
Mendyk, Ł., Charzyński, P., 2016. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs). Soil Science Annual 67(1), 17–23.
 
64.
Meuser, H., Blume, H. P., 2001. Characteristics and classification of anthropogenic soils in the Osnabrück area, Germany. Journal of Plant Nutrition and Soil Science 164(4), 351-358.
 
65.
Morel, J.L., Burghardt, W., Kim, K.-H.J., 2017. The challenges for soils in the urban environments. [In:] Lewin, M.J., Kim, K.-H.J., Morel, J.L., Burghardt, W., Charzyński, P, Shaw, R.K., (Eds.), Soils within cities. Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher, pp. 123–128.
 
66.
Morel, J. L., Charzyński, P., Shaw, R. K., Zhang, G., 2015. The seventh SUITMA conference held in Toruń, Poland, September 2013. Journal of Soils and Sediments 15(8), 1657-1658.
 
67.
Mückenhausen, E., 1954. A tentative classification scheme of the soil of Germany. TAO. Meeting f. Soil Classification. Gand.
 
68.
Musielok, Ł., Drewnik, M., Stolarczyk, M., Gus, M., Bartkowiak, S., Kożyczkowski, K., Wątły, M., 2018. Rates of anthropogenic transformation of soils in the Botanical Garden of Jagiellonian University in Kraków (Poland). Catena 170, 272-282.
 
69.
Nachtergaele, F. O., Spaargaren, O., Deckers, J. A., Ahrens, B., 2000. New developments in soil classification: world reference base for soil resources. Geoderma 96(4), 345-357.
 
70.
Ochman, D., Kaszubkiewicz, J., Kasina, M., Nowacka, S., 2003. Changes of physical and physico-chemical properties of soils under the influence of highly mineralized trickling waters from the tailings impoundment äIron Bridgeö. Zeszyty Problemowe Postepow Nauk Rolniczych 493, 833-838.
 
71.
Pardela, Ł., Kowalczyk, T., Bogacz, A., Kasowska, D., 2020. Sustainable Green Roof Ecosystems: 100 Years of Functioning on Fortifications—A Case Study. Sustainability 12(11), 4721.
 
72.
Piernik, A., Hulisz, P., Rokicka, A., 2015. Micropattern of halophytic vegetation on technogenic soils affected by the soda industry. Soil Science and Plant Nutrition, 61(sup1), 98-112.
 
73.
Pietrzykowski, M., Krzaklewski, W., Piechnik, Ł., 2011. Soil characteristics on afforested areas after calamine mining. Roczniki Gleboznawcze – Soil Science Annual 62(2), 325–334 (in Polish with English abstract).
 
74.
Pietrzykowski, M., Likus-Cieślik, J., 2018. Comprehensive study of reclaimed soil, plant, and water chemistry relationships in highly S-contaminated post sulfur mine site Jeziórko (Southern Poland). Sustainability 10, 2442.
 
75.
Pindral, S, Kot, R, Hulisz, P, Charzyński, P., 2020. Landscape metrics as a tool for analysis of urban pedodiversity. Land Degradation and Development, 1–14. https://doi.org/10.1002/ldr.36....
 
76.
Piotrowska-Długosz, A., Charzyński, P., 2015. The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the Ekranic Technosols of Toruń (Poland). Journal of Soils and Sediments 15, 47-59.
 
77.
Pokojska, U., Bednarek, R., Hulisz, P., 1998. Problemy systematyki gleb zasolonych w odniesieniu do obszaru objętego wpływem IZCH „SODA –MĄTWY S.A.”. Zeszyty Problemowe Postępów Nauk Rolniczych 460, 513 ̶ 521.
 
78.
Przyrodniczo-genetyczna klasyfikacja gleb Polski ze szczególnym uwzględnieniem gleb uprawnych. 1956. Roczniki Nauk Rolniczych 74-D, 1–96. (in Polish with English summary).
 
79.
Rosik-Dulewska, C., Dulewski, J., 1989. The chemical composition and the content of selected radionuclides in plants cultivated on an ash dump of the Halemba power plant. Roczniki Gleboznawcze – Soil Science Annual 40, 151–169.
 
80.
Rossiter, D. G., 2007. Classification of urban and industrial soils in the world reference base for soil resources (5 pp). Journal of Soils and Sediments 7(2), 96-100.
 
81.
Schad, P., 2018. Technosols in the World Reference Base for Soil Resources–history and definitions. Soil Science and Plant Nutrition 64(2), 138-144.
 
82.
Siem, H.K., Cordsen, E., Blume, H.P., Finnern, H., 1987. Klassifizierung von Böden anthropogener Lithogenese vorgestellt an Beispiel von Böden im Stadtgebiet Kiel. Mitteilungen der Deutsche Bodenkundlichen Gesellschaft 55/II, 831–836.
 
83.
Skawina, T., 1958a. The processes of soil deterioration in mining and industrial regions. Roczniki Gleboznawcze – Soil Science Annual 7(suppl.), 131–148 (in Polish with English abstract).
 
84.
Skawina, T., 1958b. The development of soil formation processes on the waste heaps of the coal industry. Roczniki Gleboznawcze – Soil Science Annual 7(suppl.), 149–162 (in Polish with English abstract).
 
85.
Solntseva, N. P., 2002. Trends in soil evolution under technogenic impacts. Eurasian soil science 35, 6-16.
 
86.
Strzemski, M., 1955. Problems of urban soil science. Przegląd Geograficzny 27(3-4), 579–587 (in Polish with English abstract).
 
87.
Strzemski, M., 1971. Myśli przewodnie systematyki gleb. PWRiL Warszawa, IUNG Puławy, Seria P, 16, 580 pp.
 
88.
Strzyszcz, Z., 1978. Chemiczne przemiany utworów karbońskich w aspekcie biologicznej rekultywacji i zagospodarowania centralnych zwałowisk. Prace i Studia PAN 19 (in Polish, with English summary).
 
89.
Sutkowska, K., Teper, L., Stania, M. 2015. Tracing potential soil contamination in the historical Solvay soda ash plant area, Jaworzno, Southern Poland. Environmental Monitoring and Assessment 187, 704.
 
90.
Systematyka Gleb Polski. 1974. Roczniki Gleboznawcze – Soil Science Annual 25(1), 1-149. (in Polish with English summary).
 
91.
Systematyka Gleb Polski. 1989. Roczniki Gleboznawcze – Soil Science Annual 40(3/4), 1–150. (in Polish with English summary).
 
92.
Systematyka Gleb Polski. 2011. Roczniki Gleboznawcze – Soil Science Annual 62(3), 1–193. (in Polish with English summary).
 
93.
Systematyka Gleb Polski. 2019. Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław –Warszawa, 235 pp. (in Polish with English summary).
 
94.
Szymańska, S., Borruso, L., Brusetti, L., Hulisz, P., Furtado, B., Hrynkiewicz, K., 2018. Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity. Environmental Science and Pollution Research 25(25), 25420-25431.
 
95.
Uzarowicz, Ł., 2011. Technogenic soils developed on mine spoils containing iron sulfides in select abandoned industrial sites: Environmental hazards and reclamation possibilities. Polish Journal of Environmental Studies 20(3), 771–782.
 
96.
Uzarowicz, Ł., Kwasowski, W., Śpiewak, O., Świtoniak, M., 2018a. Indicators of pedogenesis of Technosols developed in an ash settling pond at the Bełchatów thermal power station (central Poland). Soil Science Annual 69, 49–59.
 
97.
Uzarowicz, Ł., Zagórski, Z., Mendak, E., Bartmiński, P., Szara, E., Kondras, M., Oktaba, L., Turek, A., Rogoziński, R., 2017. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis. Catena 157, 75–89.
 
98.
Weber, J., Strączyńska, S., Kocowicz, A., Gilewska, M., Bogacz, A., Gwiżdż, M., Dębicka, M., 2015. Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation. Catena 133, 250–254.
 
99.
Woś, B., Pietrzykowski, M., Krzaklewski, W., 2014. Properties of humus in soils formed on afforested dumping ground of the sulphur mine. Sylwan 158, 893–900.
 
100.
Zielińska, S., Radkowski, P., Ossowski, T., Ludwig-Gałęzowska, A., Łoś, J. M., Łoś, M., 2017. First insight into microbial community composition in a phosphogypsum waste heap soil. Acta Biochimica Polonica 64, 693-698.
 
101.
Znamirowska-Karaś, I., 2001. The soil forming processes depending on the waste material of mica-schist, loam dumps in the Sudety Mts. Zeszyty Naukowe Uniwersytetu Zielonogórskiego 133, 95-102.
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top