PL EN
ORIGINAL PAPER
Study on the physical properties of a forest Glossic Retisol developed from loess in the Lublin Upland, SE Poland
 
 
 
More details
Hide details
1
Institute of Soil Science and Environment Management, University of Life Sciences in Lublin, Polska
 
 
Submission date: 2023-05-30
 
 
Final revision date: 2023-08-27
 
 
Acceptance date: 2023-11-08
 
 
Online publication date: 2023-11-08
 
 
Publication date: 2023-11-08
 
 
Corresponding author
Maja Bryk   

Institute of Soil Science and Environment Management, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069, Lublin, Polska
 
 
Soil Sci. Ann., 2023, 74(4)174969
 
KEYWORDS
ABSTRACT
Clay-illuvial soils with argic horizon and developed from loess or other silty deposits constitute high-quality arable land owing to favourable physical and chemical properties,. There are thus numerous reports on such soils, considering their structure, compaction, erosion, water and air properties. However, there is still a lack of quantitative studies on structure and physical properties on analogous soils under forests. The aim of this research was therefore a comprehensive description of the physical state, including structure, water and air properties, of a forest Retisol developed from loess. Morphographic, morphological and morphometric parameters of structure, selected physicochemical and water and air properties and also relationships among the obtained parameters were analysed for genetic horizons O, Ah, AE, E, Bt/E, Bt, BtC and C. The field survey and soil structure images indicated that the studied forest soil had an undisturbed sequence of genetic horizons. The soil structure was shaped by soil flora and fauna causing bioturbation. Qualitative and quantitative structure analysis revealed that the O horizon had a loose arrangement, the Ah horizon had an aggregate crumb structure, the AE horizon had zones of an aggregate crumb structure and non-aggregate structure (fissured or with channels), while the remaining mineral horizons showed essentially a non-aggregate structure with varying proportions and sizes of planes and biogenic pores (i.e. cracked or fissured structure and structure with channels, respectively). The morphometric and physicochemical parameters facilitated a detailed analysis of the Retisol’s physical state. The Retisol’s structure type and degree of aggregate development directly influenced its hydraulic conductivity and water retention capacity. Therefore, under simulated precipitation, the soil water content and effective saturation varied mainly in the topsoil (O–E horizons) and virtually no changes were observed in the subsoil (Bt–C horizons). The research resulted in a comprehensive analysis of the physicochemical and morphometric parameters, their relationships, and structure images that were previously unavailable in other studies, covering the physical state of the entire pedon of a forest Retisol. The results obtained may serve, for example, as a reference (control) for analogous soils located in non-forest ecosystems and become an element in space-for-time substitution scenarios aimed at assessing the intensity of anthropogenic transformation.
REFERENCES (64)
1.
Aguilar, J., Dorronsoro-Fdez, C., Fernández, J., Dorronsoro Diaz, C., Martin, F., Dorronsoro, B., 2023. Soil microscopy. Soil Micromorphography. Interactive Multimedia Programme for Self-studying Soil Thin Section Description (http://edafologia.ugr.es/micgr... (accessed on 15.03.2023)).
 
2.
Beck, H., Zimmermann, N., McVicar, T., Vergopolan, N., Berg, A., Wood, E.F., 2018. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5, 180214. https://doi.org/10.1038/sdata.....
 
3.
Beckmann, W., Geyger, E., 1967. Entwurf einer Ordnung der natürlichen Hohlraum-, Aggregat-, und Strukturformen in Boden. [In:] Kubiëna, W.L. (Ed.), Die mikromorphometrische Bodenanalyse. Ferdinand Enke Verlag, Stuttgart, 163–188.
 
4.
Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57, 289–300. https://doi.org/10.1111/j.2517....
 
5.
Boyle, J.R., 2005. Forest soils. [In:] Hillel, D. (Ed.) Encyclopedia of Soils in the Environment. Elsevier, 73–79. https://doi.org/10.1016/B0-12-....
 
6.
Brahy, V., Deckers, J., Delvaux, B., 2000. Estimation of soil weathering stage and acid neutralizing capacity in a toposequence Luvisol–Cambisol on loess under deciduous forest in Belgium. Europen Journal of Soil Science 51(1), 1–13. https://doi.org/10.1046/j.1365....
 
7.
Brewer, R., Sleeman, J.R., 1960. Soil structure and fabric. Their definition and description. Journal of Soil Science 11, 172–185. https://doi.org/10.1111/j.1365....
 
8.
Bryk M., 2008. Morphometric evaluation of transformation of soil structure from coherent into aggregate one. Acta Agrophysica 12(3), 595–606.
 
9.
Bryk M., 2010. Changes of size distribution of macropores and solid phase elements in Rendzic Leptosol caused by tillage. Acta Agrophysica 15(2), 221–232.
 
10.
Bryk, M., 2016. Macrostructure of diagnostic B horizons relative to underlying BC and C horizons in Podzols, Luvisol, Cambisol, and Arenosol evaluated by image analysis. Geoderma 263, 86–103. https://doi.org/10.1016/j.geod....
 
11.
Bryk, M., Kołodziej, B., 2014. Assessment of water and air permeability of chernozem supported by image analysis. Soil and Tillage Research 138, 73–84. https://doi.org/10.1016/j.stil....
 
12.
Bryk, M., Słowińska-Jurkiewicz, A., Kołodziej, B., 2005. Changes of pore orientation in soil lessivé caused by tillage measures. Annales UMCS Sectio E Agricultura 60, 229–236.
 
13.
Buraczyński, J. (Ed.), 2002. Roztocze. Natural environment. Wydawnictwo Lubelskie, Lublin.
 
14.
Carmean, W.H., 1957. The structure of forest soils. Ohio Journal of Science 57(3), 165–168.
 
15.
Cosentino, D., Chenu, C., Le Bissonnais, Y., 2006. Aggregate stability and microbial community dynamics under drying–wetting cycles in a silt loam soil. Soil Biology and Biochemistry 38(8), 2053–2062. https://doi.org/10.1016/j.soil....
 
16.
Domżał, H., Hodara, J., Słowińska-Jurkiewicz, A., Turski, R., 1993. The effects of agricultural use on the structure and physical properties of three soil types. Soil and Tillage Research 27(1–4), 365–382. https://doi.org/10.1016/0167-1....
 
17.
Durner, W., 1994. Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resources Research 30(2), 211–223. https://doi.org/10.1029/93WR02....
 
18.
FitzPatrick, E.A., 1984. Micromorphology of Soils. Chapman and Hall, London, New York.
 
19.
Fox, J., Weisberg, S., 2019. An {R} Companion to Applied Regression, Third Edition. Thousand Oaks (CA), Sage. https://socialsciences.mcmaste....
 
20.
Gilewska, S., 1999. Poland’s natural environment in comparison with Europe. [In:] Starkel, L. (Ed.), Geography of Poland. Natural environment. Wydawnictwo Naukowe PWN, Warszawa, 15–24.
 
21.
Glina, B., Jezierski, P., Kabała, C., 2013. Physical and water properties of Albeluvisols in the Silesian Lowland (SW Poland). Soil Science Annual 64(4), 123–129. https://doi.org/10.2478/ssa-20....
 
22.
Glina, B., Waroszewski, J., Kabała, C., 2014. Water retention of the loess-derived Luvisols with lamellic illuvial horizon in the Trzebnica Hills (SW Poland). Soil Science Annual 65(1), 18–24. https://doi.org/10.2478/ssa-20....
 
23.
Huang, X., Horn, R., Ren, T., 2022. Soil structure effects on deformation, pore water pressure, and consequences for air permeability during compaction and subsequent shearing. Geoderma 406, 115452. https://doi.org/10.1016/j.geod....
 
24.
IMGW–PIB, 2023. Available online: https://danepubliczne.imgw.pl/... (accessed on 28 April 2023).
 
25.
ISO 10390, 2021. Soil, treated biowaste and sludge – Determination of pH.
 
26.
ISO 10693, 1995. Soil quality – Determination of carbonate content – Volumetric method.
 
27.
ISO 11277, 2009. Soil quality – Determination of particle size distribution in mineral soil material – Method by sieving and sedimentation.
 
28.
ISO 11508, 2017. Soil quality – Determination of particle density.
 
29.
ISO 14235, 1998. Soil quality – Determination of organic carbon by sulfochromic oxidation.
 
30.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
 
31.
Jongerius, A., Rutherford, G.K. (Eds.), 1979. Glossary of Soil Micromorphology. Centre for Agricultural Publishing and Documentation, Wageningen.
 
32.
Kabała, C., Musztyfaga, E., 2015. Clay-illuvial soils in the Polish and international soil classifications. Soil Science Annual 66(4), 204–213. https://doi.org/10.1515/ssa-20....
 
33.
Kabała, C., Przybył, A., Krupski, M., Łabaz, B., Waroszewski, J., 2019. Origin, age and transformation of Chernozems in northern Central Europe – New data from Neolithic earthen barrows in SW Poland. Catena 180, 83–102. https://doi.org/10.1016/j.cate....
 
34.
Kassambara, A., Mundt, F., 2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7, https://CRAN.R-project.org/pac....
 
35.
Klíč, R., Kravka, M., Wimmerová, L., Viruez, J.L.G., Válová, M., Miháliková, M., 2022. Microplastics locked in water-stable aggregates of the Haplic Luvisol and role of land use on their potential mobility. Water, Air, and Soil Pollution 233, 37. https://doi.org/10.1007/s11270....
 
36.
Kołodziej, B., Bryk, M., Słowińska-Jurkiewicz, A., 2004. Use of pore elongation index for structure evaluation of soil lessivé affected by tillage measures. Annales UMCS Sectio E Agricultura 59(1), 337–343.
 
37.
Krupski, M., Mackiewicz, M., Kabała, C., Ehlert, M., Cendrowska, M., 2021. Earthen mounds in the Głubczyce Forest (SW Poland) – are they prehistoric long-barrows? Geoarchaeology of the Silesian soil record and human-environment interplay in the Holocene. Praehistorische Zeitschrift 96(2), 413–433. https://doi.org/10.1515/pz-202....
 
38.
Lado, M., Paz, A., Ben-Hur, M., 2004. Organic matter and aggregate-size interactions in saturated hydraulic conductivity. Soil Science Society of America Journal 68, 234–242. https://doi.org/10.2136/sssaj2....
 
39.
Le, S., Josse, J., Husson, F., 2008. FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software 25(1), 1–18. https://doi.org/10.18637/jss.v....
 
40.
Morris, L.A., 2004. Soil organic matter forms and functions. [In:] Burley, J., Evans, J., Youngquist, J.A. (Eds.) Encyclopedia of Forest Sciences, Elsevier, Oxford, 1201–1207.
 
41.
Nemes, A., Rawls, W.J., Pachepsky, Y.A., 2005. Influence of organic matter on the estimation of saturated hydraulic conductivity. Soil Science Society of America Journal 69, 1330–1337. https://doi.org/10.2136/sssaj2....
 
42.
Obalum, S.E., Uteau-Puschmann, D., Peth, S., 2019. Reduced tillage and compost effects on soil aggregate stability of a silt-loam Luvisol using different aggregate stability tests. Soil and Tillage Research 189, 217–228. https://doi.org/10.1016/j.stil....
 
43.
Paluszek, J., 2011. Criteria of evaluation of physical quality of Polish arable soils. Acta Agrophysica 191, 1–139.
 
44.
Polish Soil Classification, 2019. Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław –Warszawa, 235 pp.
 
45.
R Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
 
46.
Rawls, W.J., Pachepsky, Y.A., Ritchie, J.C., Sobecki, T.M., Bloodworth, H., 2003. Effect of soil organic carbon on soil water retention. Geoderma 116(1–2), 61–76. https://doi.org/10.1016/S0016-....
 
47.
Russ, J.C., Dehoff, R.T., 2000. Practical Stereology, 2nd ed. Kluwer Academic/Plenum Publishers, New York, NY.
 
48.
Sauzet, O., Cammas, C., Barbillon, P., Étienne, M-P., Montagne, D., 2016. Illuviation intensity and land use change: Quantification via micromorphological analysis. Geoderma 266, 46–57. https://doi.org/10.1016/j.geod....
 
49.
Sauzet, O., Kohler-Milleret, R., Füllemann, F., Capowiez, Y., Boivin, P., 2021. Nicodrilus nocturnus and Allolobophora icterica drill compacted soils but do not decrease their bulk density – A laboratory experiment using two contrasted soils at two different compaction levels. Geoderma 402, 115164. https://doi.org/10.1016/j.geod....
 
50.
Saxton, K.E., Rawls, W.J., 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal 70, 1569–1578. https://doi.org/10.2136/sssaj2....
 
51.
Šimůnek, J., Huang, K., van Genuchten, M.T., 1998. The HYDRUS code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Version 6.0. Res. Rep. 144. U.S. Salinity Laboratory, Riverside (CA), USA.
 
52.
Šimůnek, J., Šejna, M., Saito, H., Sakai, M., van Genuchten, M.T., 2018. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. Manual, version 4.17. Department of Environmental Sciences, University of California, Riverside (CA), USA, 348 pp.
 
53.
Słowińska-Jurkiewicz A., Kołodziej B., Bryk M., 2004. Effect of tillage measures on structure of the soil lessivé – morphometrical evaluation of macropores. Annales UMCS Sectio E Agricultura 59(1), 329–335.
 
54.
Słowińska-Jurkiewicz, A. 1989. Structure, water and air properties of soils developed from loess. Polish Agricultural Annuals Series D Monographs, 218, 76 pp.
 
55.
Słowińska-Jurkiewicz, A., Bryk, M., Kołodziej, B., Jaroszuk-Sierocińska, M., 2012. Makrostruktura gleb Polski – Macrostructure of soils in Poland. AWR Magic, Lublin, Poland. https://hdl.handle.net/20.500.....
 
56.
Słowińska-Jurkiewicz, A., Bryk, M., Medvedev, V.V., 2013. Long-term organic fertilization effect on chernozem structure. International Agrophysics 27(1), 81–87. https://doi.org/10.2478/v10247....
 
57.
Soil Atlas of Europe, 2005. European Soil Bureau Network, European Commission, Office for Official Publications of the European Communities, L-2995 Luxembourg, 128 pp.
 
58.
Solon, J. et al., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2), 143–170. https://doi.org/10.7163/GPol.0....
 
59.
Święcicki, C., Siuta, J., Sienkiewicz, J., Trzecki, S., Kiersnowski, J., 1972. Selected soil properties influencing the conditions of agricultural engineering development. Zeszyty Problemowe Postępów Nauk Rolniczych – Advances of Agricultural Sciences Problem Issues, 135.
 
60.
Toková, L., Igaz, D., Horák, J., Aydın, E., 2023. Can application of biochar improve the soil water characteristics of silty loam soil? Journal of Soils and Sediments. https://doi.org/10.1007/s11368....
 
61.
Tóth, B., Weynants, M., Nemes, A., Makó, A., Bilas, G., Tóth, G., 2015. New generation of hydraulic pedotransfer functions for Europe. European Journal of Soil Science 66(1), 226–238. https://doi.org/10.1111/ejss.1....
 
62.
van Genuchten, M.T., Leij, F.J., Yates, S.R., 1991. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, Version 1.0. EPA Report 600/2-91/065. U.S. Salinity Laboratory, USDA, ARS, Riverside (CA), USA.
 
63.
Wągrowski, A., 1996. Detailed geological map of Poland, 859–Turobin (M-34-46-C). Polish Geological Institute, Warsaw. https://bazadata.pgi.gov.pl/da....
 
64.
Zvala, A., Orfánus, T., Čelková, A., 2020. The measurements of saturated hydraulic conductivity of the forest floor under deciduous forest. Acta Hydrologica Slovaca 21(1), 106–112. https://doi.org/10.31577/ahs-2....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top