PL EN
REVIEW PAPER
Studies of technogenic soils in Poland: past, present, and future perspectives
 
More details
Hide details
1
Institute of Agriculture, Department of Soil Science, Warsaw University of Life Sciences – SGGW, Polska
 
2
Faculty of Earth Sciences and Spatial Management, Department of Soil Science and Landscape Management, Nicolaus Copernicus University in Toruń, Polska
 
3
Institute of Environmental Engineering, Department of Geoengineering and Reclamation, University of Zielona Gora, Polska
 
4
Institute of Soil Science and Environmental Protection, Wrocław University of Environmental and Life Sciences, Polska
 
5
Department of Land Protection, University of Opole, Polska
 
 
Submission date: 2020-10-07
 
 
Final revision date: 2020-11-09
 
 
Acceptance date: 2020-12-11
 
 
Online publication date: 2021-01-14
 
 
Publication date: 2021-01-14
 
 
Corresponding author
Łukasz Uzarowicz   

Institute of Agriculture, Department of Soil Science, Warsaw University of Life Sciences – SGGW, Nowoursynowska Str. 159, 02-776, Warszawa, Polska
 
 
Soil Sci. Ann., 2020, 71(4), 281-299
 
KEYWORDS
ABSTRACT
For a long time, the soils covering areas strongly transformed by human were ignored in scientific discourse. Also, practice did not care much about these soils because of their unproductivity. Only the large post-mining areas reclaimed and transformed into a forest or agricultural land were more interesting both for science and practice. In the case of post-mining areas the term “soilless land” was used for a long time, especially in relation to areas which were not reclaimed. In this paper, the past studies (until the end of 20th century) of technogenic soils in Poland were described. Technogenic soils of urban and industrial areas appeared in scientific considerations in Poland in the second half of the 20th century. In those times, soil properties on disposal sites were mainly investigated as a basic information for further design of technical and biological reclamation on disposal sites. Two Polish scientists should be emphasised as the world pioneers in concepts and studies of technogenic soils: (1) Michał Strzemski, who proposed a classification scheme for soils in urban and industrial areas, as well as listed the tasks for future studies of these soils, and (2) Tadeusz Skawina, who focused on the dynamic and directions of the soil-forming processes on the mine spoils in the context of their reclamation. Moreover, studies of technogenic soils in the last two decades were also shown in the paper. From the beginning of the 21st century the scientific research gained momentum. Nowadays, Polish researchers have great achievements in studying technogenic soils, including investigation of their properties, genesis, evolution, classification, biological features etc. Furthermore, we drew some outlines for future studies of Technosols.
REFERENCES (318)
1.
Adamczyk, B., 1965. Secondary transformations of the soil and plant cover in the northwestern region of the Świętokrzyskie Mts. formerly under mining exploitation. Roczniki Gleboznawcze – Soil Science Annual 15 (supl.), 437–442. (in Polish with English abstract).
 
2.
Bender, J., 1980. Biological reclamation of the post-mining dumps. International Agricultural Jornal of CMEA (Council for Mutual Economic Assistance) 3, 50–55.
 
3.
Bender, J., 1983. Theoretical base of technogenous landscape recultivation. Recultivation of technogenous areas. Matraalja Coal Mining Co., Gyongyos, 113–118.
 
4.
Bender, J., 1995. Rekultywacja terenów pogórniczych w Polsce. Zeszyty Problemowe Postępów Nauk Rolniczych 418, 75–86.
 
5.
Bender, J., Gilewska, M., 2004. Reclamation in the light of investigations and implementation. Roczniki Gleboznawcze – Soil Science Annual 55(2), 29–46. (in Polish with English abstract).
 
6.
Beroigui, M., Naylo, A., Walczak, M., Hafidi, M., Charzyński, P., Świtoniak, M., Różański, S., Boularbah, A., 2020. Physicochemical and microbial properties of urban park soils of the cities of Marrakech, Morocco and Toruń, Poland: Human health risk assessment of fecal coliforms and trace elements, Catena 194, 104673; DOI: 10.1016/j.catena.2020.104673.
 
7.
Bielińska, E.J., Kawecka-Radomska, M., Kłos, A., 2011. Impact of urban factors on the content of polycyclic aromatic hydrocarbons in soils of park gardens. Roczniki Gleboznawcze – Soil Science Annual 62(2), 16–22. (in Polish with English abstract).
 
8.
Bielska, A., Turek, A., Maciejewska, A., Bożym, K., 2015. The issue of agricultural land protection in the process of suburbanization. Infrastructure and Ecology of Rural Areas, IV, 1, 1035–1045. (in Polish with English abstract).
 
9.
Bogda, A., Chodak, T., 1995. Niektóre właściwości fizyczne i skład mineralogiczny osadów poflotacyjnych ze zbiornika „Gilow”. Zeszyty Problemowe Postępów Nauk Rolniczych 418, 415–420.
 
10.
Bolewski, A., Skawina, T., 1972. Experimental application of montmorillonite clays for recultivation of sands. Prace Mineralogiczne 30. PAN, Oddział w Krakowie. Wydawnictwa Geologiczne, Warszawa.
 
11.
Boroń, K., Klatka, S., Ryczek, M., Liszka, P., 2016. The formation of the physical, physico-chemical and water properties reclaimed and not reclaimed sediment reservoir of the former Cracow soda plant „Solvay”. Acta Scientiarum Polonorum, Formatio Circumiectus 15(3), 35–43. (in Polish with English abstract).
 
12.
Bril, H., Zainoun, K., Puziewicz, J., Courtin-Nomade, A., Vanaecker, M., Bollinger, J.C., 2008. Secondary phases from the alteration of a pile of zinc-smelting slag as indicators of environmental conditions: An example from Świȩtochłowice, Upper Silesia, Poland. Canadian Mineralogist 46, 1235–1248. https://doi.org/10.3749/canmin....
 
13.
Brogowski, Z., Czarnowska, K., Chojnicki, J., Pracz, J., Zagórski, Z., 2000. Influence of salt stress on chemical composition of trees leafs from Łodź city area. Roczniki Gleboznawcze – Soil Science Annual 51(1/2), 17–28. (in Polish with English abstract).
 
14.
Cabała, J., Teper, L., 2007. Metalliferous constituents of rhizosphere soils contaminated by Zn-Pb mining in Southern Poland. Water Air and Soil Pollution 178, 351–362. https://doi.org/10.1007/s11270....
 
15.
Cabała, J., Zogala, B., Dubiel, R., 2008. Geochemical and geophysical study of historical Zn-Pb ore processing waste dump areas (Southern Poland). Polish Journal of Environmental Studies 17(5), 693–700.
 
16.
Charzyński, P., Hulisz, P., 2013. Soils forming on buildings in Toruń. [In:] Charzyński, P., Hulisz, P., Bednarek, R. (Eds.), Technogenic Soils of Poland. Polish Society of Soil Science, Toruń, pp. 81–93.
 
17.
Charzyński, P., Hulisz, P., 2017. The case of Toruń, Poland. [In:] Maxine, J.L., Kye-Hoon, J.K., Morel, J.-L., Burghardt, W., Charzyński, P, Shaw, R.K., (Eds.), Soils within cities. Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher, pp. 123–128.
 
18.
Charzyński, P., Bednarek, R., Błaszkiewicz, J., 2011a. Morphology and properties of Ekranic Technosols in Toruń and Cluj-Napoca. Roczniki Gleboznawcze – Soil Science Annual 62(2), 48–53. (in Polish with English abstract).
 
19.
Charzyński, P., Bednarek, R., Chmurzyński, M., 2011b. Properties of soils forming on the buildings in Toruń city. [In:] Jankowski, M. (Ed.), Selected Problems of Genesis, Systematics, Management and Soil Protection in Region of Kuyavia and Pomerania. PTSH, PTG, Toruń, pp. 11–28. (in Polish).
 
20.
Charzyński, P., Bednarek, R., Świtoniak, M., Żołnowska, B., 2011c. Ekranic Technosols and Urbic Technosols of Toruń Necropolis. Geologia 53(4), 179–185. https://doi.org/10.6001/geolog....
 
21.
Charzyński, P., Hulisz, P., Bednarek, R., (eds.), 2013a. Technogenic Soils of Poland. Polish Society of Soil Science, Toruń.
 
22.
Charzyński, P., Markiewicz, M., Świtoniak, M., (eds.), 2013b. Technogenic Soils Atlas. Polish Society of Soil Science, Toruń.
 
23.
Charzyński, P., Bednarek, R., Greinert, A., Hulisz, P., Uzarowicz, Ł., 2013c. Classification of technogenic soils according to WRB system in the light of Polish experiences. Soil Science Annual 64(4), 145–150. https://doi.org/10.2478/ssa-20....
 
24.
Charzyński, P., Bednarek, R., Mendyk, Ł., Świtoniak, M., Pokojska-Burdziej, A., Nowak, A., 2013d. Ekranosols of Toruń airfield, [In:] Charzyński, P., Hulisz, P., Bednarek, R. (Eds.), Technogenic Soils of Poland. Polish Society of Soil Science, Toruń, pp. 173–190.
 
25.
Charzyński, P., Hulisz, P., Bednarek, R., Piernik, A., Winkler, A., Chmurzyński, M., 2015a. Edifisols – a new soil unit of technogenic soils. Journal of Soils and Sediments 15(8), 1675–1686. https://doi.org/10.1007/s11368....
 
26.
Charzyński, P., Markiewicz, M., Majorek, M., Bednarek, R., 2015b. Geochemical assessment of soils in the German Nazi concentration camp in Stutthof (Northern Poland). Soil Science and Plant Nutrition 61, sup1, 47–54, https://doi.org/10.1080/003807....
 
27.
Charzyński, P., Galbraith, J.M., Kabała, C., Kühn, D., Prokofeva, T.V., Vasenev, V.I., 2017a. Classification of urban soils. [In:] Maxine, J.L., Kye-Hoon, J.K., Morel, J.-L., Burghardt, W., Charzyński, P, Shaw, R.K., (Eds.), Soils within cities. Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher, 93–106.
 
28.
Charzyński, P., Plak, A., Hanaka, A., 2017b. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors. Environmental Science and Pollution Research 24(5), 4801–4811. https://doi.org/10.1007/s11356....
 
29.
Charzyński, P., Bednarek, R., Hudańska, P., Świtoniak, M., 2018a. Issues related to classification of garden soils from the urban area of Toruń, Poland. Soil Science and Plant Nutrition 64:2, 132-137. https://doi.org/10.1080/003807....
 
30.
Charzyński, P., Hulisz, P., Piotrowska-Długosz, A., Kamiński, D., Plak, A., 2018b. Sealing Effects on Properties of Urban Soils. [In:] Rattan, L., Stewart, B.A., (Eds.), Urban Soils. CRC Press, Boca Raton – London – New York, 155–174. https://doi.org/10.1201/978131....
 
31.
Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K., Niklińska, M., 2013. Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology 64, 7–14. https://doi.org/10.1016/j.apso....
 
32.
Chodak, T., Kaszubkiewicz, J., Mizera, A., 2005. Researches of soil-forming value of flotation tailings and waste rock disposal site K-I in the Iwiny region in the aspect of their susceptibility to reclamation works. Cuprum 1, 57–95.
 
33.
Chudecka, J., 2009. Charakterystyka substratu glebowego w warstwie antropogenicznej najstarszej części Szczecina. Wyd. Uczelniane ZUT w Szczecinie, 110 pp.
 
34.
Ciarkowska, K., Gargiulo, L., Mele, G., 2016. Natural restoration of soils on mine heaps with similar technogenic parent material: A case study of long-term soil evolution in Silesian-Krakow Upland Poland. Geoderma 261, 141–150. https://doi.org/10.1016/j.geod....
 
35.
Czarnowska, K., 1975. Występowanie metali ciężkich w glebach zieleńców warszawskich. Roczniki Nauk Rolniczych, Ser. A, 101, 159–167.
 
36.
Czarnowska, K., 1999. Heavy metals in lawn soils of Warsaw. Roczniki Gleboznawcze - Soil Science Annual 50(1/2), 31–40. (in Polish with English abstract).
 
37.
Czarnowska, K., 1978. Zmiany zawartości metali ciężkich w glebach i roślinach z terenu Warszawy jako wskaźnik antropogenizacji środowiska. Zeszyty Naukowe SGGW-AR, 106, 71.
 
38.
Czarnowska, K., 1980. Heavy metals accumulation in soils, plants and some animals from Warsaw area. Roczniki Gleboznawcze – Soil Science Annual 31(1), 77–115. (in Polish with English abstract).
 
39.
Czarnowska, K., 1995. Soils and plants in urban environment. Zeszyty Problemowe Postępów Nauk Rolniczych PAN 418, I, 111–115. (in Polish).
 
40.
Czarnowska, K., 1996. Total content of heavy metals in parent rocks as reference background levels of soils. Roczniki Gleboznawcze – Soil Science Annual 47(suppl.), 43–50. (in Polish with English summary).
 
41.
Czarnowska, K., Gworek, B., Kozanecka, T., Latuszek, B., Szafrański, E., 1983. Heavy metals content in soils as indicator of urbanization. Polish Ecological Studies 9(1-2), 63–79.
 
42.
Czarnowska, K., Konecka-Betley, K., 1977. Wpływ zanieczyszczeń atmosfery na właściwości gleb i akumulację metali ciężkich w glebach i roślinach na terenie Warszawy. Człowiek i Środowisko 1(4), 73–90. (in Polish).
 
43.
Czarnowska, K., Walczak, J., 1988. Distribution of zinc, lead and manganese in soils of Łódź city. Roczniki Gleboznawcze – Soil Science Annual 39(1), 19–27.
 
44.
Czerniawska-Kusza, I., Kusza, G., Dużyński, M., 2004. Effect of deicing salts on urban soils and health status of roadside trees in the Opole region. Environmental Toxicology 19, 296−301.
 
45.
Czerwiński, Z., 1978. Wpływ chemicznej technologii odśnieżania ulic na gleby i roślinność drzewiastą aglomeracji miejskich. Zeszyty Naukowe SGGW-AR, 104.
 
46.
Czerwiński, Z., Pracz, J., 1990a. Soils [In:] Environment of Warsaw. Varsaviana Publ., 197–212. (in Polish).
 
47.
Czerwiński, Z., Pracz, J., 1990b. Gleby i kierunki ich transformacji w warunkach presji urbanistycznej. Centralny Program Badań Podstawowych “Funkcjonowanie układów ekologicznych w warunkach zurbanizowanych”. Systematyka i cechy gleb miejskich. Wyd. SGGW, 58, 41–57.
 
48.
Dobrzański, B., Borek, S., Czarnowska, K., Czerwiński, Z., Czępińska-Kamińska, D., Kępka, M., Konecka-Betley, K., Kusińska, A., Mazurek, A., Pracz, J., 1975a. Badania gleboznawcze Parku Łazienkowskiego w Warszawie w nawiązaniu do ochrony środowiska. Cz. 1. Charakterystyka gleb. Roczniki Nauk Rolniczych, Ser. A, 101(1), 101–140.
 
49.
Dobrzański, B., Czarnowska, K., Czerwiński, Z., Konecka-Betley, K., Pracz, J., 1975b. Badania gleboznawcze Parku Łazienkowskiego w Warszawie w nawiązaniu do ochrony środowiska. Cz. 2. Wpływ aglomeracji miejskiej na gleby i rośliny. Roczniki Nauk Rolniczych, Ser. A, 101(1), 141–158.
 
50.
Dobrzański, B., Czerwiński, Z., Borek, S., Kępka, M., Majsterkiewicz, T., 1971. Wpływ związków chemicznych stosowanych do odśnieżania na zasolenie gleb zieleńców Warszawy. Roczniki Gleboznawcze – Soil Science Annual 22(1), 59–74. (in Polish with English and Russian abstract).
 
51.
Dobrzański, B., Czerwiński, Z., Pracz, J., Mazurek, A., 1977. Procesy glebowe i właściwości gleb aglomeracji miejskiej na przykładzie Ogrodu Saskiego w Warszawie. Człowiek i Środowisko 1, 33–44.
 
52.
Drab, M., 1988. Charakterystyka właściwości fizyko-chemicznych gleb powstałych na terenach poeksploatacyjnych kruszywa budowlanego w Dobroszowie Wielkim k. Nowogrodu w woj. zielonogórskim. Zesz. Nauk. WSInż. Zielona Góra, 84, 105–121.
 
53.
Drab, M., 1998. Badania nad przywracaniem produktywności gruntów po eksploatacji kruszywa budowlanego. II. Plony roślin uprawnych. Zeszyty Naukowe PZ 116, 147–159.
 
54.
Drab, M., 2002. The effects of biological reclamation of the former “Dobroszów Wielki” building aggregate deposit in the Lubuskie Province. Editorial Office of Scientific and Technical Publishers, 112 pp.
 
55.
Drab, M., 2004. The influence of land reclamation activity on forming of selected properties of grounds that had originated as a result of natural aggregate mining in Dobroszów region of Lubuskie province. Roczniki Gleboznawcze – Soil Science Annual 55(2), 85–94. (in Polish with English abstract).
 
56.
Dradrach, A., Bogacz, A., 2013. Niektóre właściwości gleb wybranych trawników ulicznych i osiedlowych Wrocławia. Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu, Rolnictwo 596, 19–33.
 
57.
Dradrach, A., Szopka, K., Karczewska, A. 2019. Ecotoxicity of pore water in soils developed on historical arsenic mine dumps: The effects of forest litter. Ecotoxicology and Environmental Safety 181, 202–213. https://doi.org/10.1016/j.ecoe....
 
58.
Dradrach, A., Karczewska, A., Szopka, K., 2020a. Arsenic accumulation by red fescue (Festuca rubra) growing in mine affected soils – Findings from the field and greenhouse studies. Chemosphere 248, 126045. https://doi.org/10.1016/j.chem....
 
59.
Dradrach, A., Karczewska, A., Szopka, K., Lewińska, K., 2020b. Accumulation of arsenic by plants growing in the sites strongly contaminated by historical mining in the Sudetes region of Poland. International Journal of Environmental Research and Public Health 17(9), 3342. https://doi.org/10.3390/ijerph....
 
60.
Dradrach, A., Szopka, K., Karczewska, A. 2020c. Ecotoxicity of pore water in meadow soils affected by historical spills of arsenic-rich tailings. Minerals 10(9), 751. https://doi.org/10.3390/min100....
 
61.
Dziewoński, K., 1955. A new branch of geographic research - urban physiography. Przegląd Geograficzny 27(3-4), 489–500. (in Polish with English and Russian summaries).
 
62.
Eckes, T., Gołda, T., Gruszczyński, S., Żuławski, C., 1986. Zasady projektowania rekultywacji zwałowisk. Archiwum Ochrony Środowiska 1-4, 143–155. (in Polish).
 
63.
Fabiańska, M.J., Ciesielczuk, J., Misz-Kennan, M., Kruszewski, Ł., Kowalski, Ł., 2016. Preservation of coal-waste geochemical markers in vegetation and soil on self-heating coal-waste dumps in Silesia, Poland. Chemie der Erde 76, 211–226. http://dx.doi.org/10.1016/j.ch....
 
64.
Filipek, T., Badora, A., 1992. Jony rozpuszczalne w wodzie w glebach zanieczyszczonych środkami do zwalczania śliskości pośniegowej. Roczniki Gleboznawcze – Soil Science Annual 43(3/4), 37–43. (in Polish with English abstract).
 
65.
Gałuszka, A., Migaszewski, Z.M., Dołęgowska, S., Michalik, A., Duczmal-Czernikiewicz, A., 2015. Geochemical background of potentially toxic trace elements in soils of the historic copper mining area: a case study from Miedzianka Mt., Holy Cross Mountains, south-central Poland. Environmental Earth Sciences 74(6), 4589–4605. https://doi.org/10.1007/s12665....
 
66.
Gałuszka, A., Migaszewski, Z., Duczmal-Czernikiewicz, A., Dołęgowska, S., 2016. Geochemical background of potentially toxic trace elements in reclaimed soils of the abandoned pyrite–uranium mine (south-central Poland). International Journal of Environmental Science and Technology 13(11), 2649–2662. https://doi.org/10.1007/s13762....
 
67.
Gałuszka, A., Migaszewski, Z.M., Dołęgowska, S., Michalik, A., 2018. Geochemical anomalies of trace elements in unremediated soils of Mt. Karczówka, a historic lead mining area in the city of Kielce, Poland. Science of The Total Environment 639, 397–405. https://doi.org/10.1016/j.scit....
 
68.
Gawron, M., Chodak, T., Szerszeń, L., 2007. Selected properties of after-flotation wastes from “Konrad” no. 1 reservoir in Iwiny with regard to their utility for biological reclamation. Zeszyty Naukowe Uniwersytetu Zielonogórskiego 133, 95–102.
 
69.
Gąsiorek, M., Kowalska, J., Mazurek, R., Pająk, M., 2017. Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere 179, 148–158. https://doi.org/10.1016/j.chem....
 
70.
Gersztyn, L., Karczewska, A., 2012. Specjacja miedzi w osadach poflotacyjnych górnictwa miedzi wzbogaconych w różne dodatki organiczne. Czasopismo Naukowo-Kulturalne, 33–39.
 
71.
Gersztyn, L., Cuske, M., Karczewska, A., Galka, B., 2013. Wpływ zakwaszenia i alkalizacji na rozpuszczalność cynku w osadach poflotacyjnych. Episteme 3, 419–427.
 
72.
Gilewska, M., 1991. Rekultywacja biologiczna gruntów pogórniczych na przykładzie KWB „Konin”. Roczniki AR w Poznaniu, Rozprawy Naukowe, nr 211.
 
73.
Gilewska, M., 2004. Biological reclamation of power plant lignite ash dump sites. Roczniki Gleboznawcze – Soil Science Annual 55(2), 103–110. (in Polish with English abstract).
 
74.
Gilewska, M., 2006. Utilization of wastes in reclamation of post mining soils and ash dump sites. Roczniki Gleboznawcze – Soil Science Annual 57(1/2), 75–81. (in Polish with English abstract).
 
75.
Gilewska, M., Otremba, K., 2007. Grunty pogórnicze Kopalni Węgla Brunatnego „Konin” jako materiał macierzysty gleb. Warsztaty 2007 z cyklu: Zagrożenia naturalne w górnictwie, Materiały Warsztatów, 39–48.
 
76.
Gilewska, M., Otremba, K., 2013. Revitalisation of post-mining regions in the area of the town of Konin. Zeszyty Naukowe UZ 150(30), 59–67. (in Polish with English abstract).
 
77.
Gilewska, M., Otremba, K., Kozłowski, M. 2020. Physical and chemical properties of ash from thermal power station combusting lignite. A case study from central Poland. Journal of Elementology 25(1), 279–295. 10.5601/jelem.2019.24.4.1886.
 
78.
Gmochowska, W., Pietranik, A., Tyszka, R., Ettler, V., Mihaljevič, M., Długosz, M., Walenczak, K., 2019. Sources of pollution and distribution of Pb, Cd and Hg in Wrocław soils: Insight from chemical and Pb isotope composition. Chemie der Erde 79, 434–445. https://doi.org/10.1016/j.chem....
 
79.
Gołda, T., 2003. Uwarunkowania prac rekultywacyjnych w kopalni siarki „Jeziórko” w wyniku wywołanych przekształceń w środowisku glebowo-wodnym. Próba syntetycznej oceny. Inżynieria Środowiska 8(1), 29–43. (in Polish).
 
80.
Gołda, T., Haładus, A., Kulma, R., 2005. Geosozologiczne skutki likwidacji kopalń siarki w rejonie Tarnobrzega. Inżynieria Środowiska 10(1), 59–73. (in Polish).
 
81.
Gołębiowska, J., Bender, J., 1983. Czynniki warunkujące powstawanie poziomu próchniczego w procesie rekultywacji zwałowisk. Archiwum Ochrony Środowiska 1-2, 65–75.
 
82.
Gołuchowska, B., Wróbel, R., 2018. Magnetic susceptibility spatial distribution as an indicator of soil pollution in the area of Opole city. Ecological Chemistry and Engineering A 25(2), 167–185.
 
83.
Greinert, A., 1998a. Ecology and urban studies. I. Transformation of soils in Zielona Góra. Ecology in Border Region. IBEN, Gorzów Wielkopolski. 76–81. (in Polish).
 
84.
Greinert, A., 1998b. Ecology and urban studies. II. Soil contaminants sources in Zielona Góra. Ecology in Border Region. IBEN, Gorzów Wielkopolski. 85–90. (in Polish).
 
85.
Greinert, A., 1998c. Ecology and urban studies. III. Pollution of soils in Zielona Góra – Comparison with other Polish cities. Ecology in Border Region. IBEN, Gorzów Wielkopolski. 97–101. (in Polish).
 
86.
Greinert, A., 1999a. Ecology and urban studies. IV. Danger of heavy metal accumulation in urban green areas. Ecology in Border Region. IBEN, Gorzów Wielkopolski. 83–87. (in Polish).
 
87.
Greinert, A., 1999b. Ecology and urban studies. V. Is pollution extraction from soils an ecological method? Ecology in Border Region. IBEN, Gorzów Wielkopolski. 63–67. (in Polish).
 
88.
Greinert, A., 2000a. Soils of the Zielona Góra urban area. Transformation of the soils as a result of urbanization processes [In:] First International Conference on Soils of Urban, Industrial, Traffic and Mining Areas : Proceedings. Essen, Vol. 1 : The Unknown Urban Soil, Detection, Resources and Faces, 33–38.
 
89.
Greinert, A. 2000b. The content of skeleton in topsoil layers of urban soils as an indicator of their degree of anthropogenic transformation on the example of the city of Zielona Góra. Zeszyty Naukowe PZ, Inżynieria Środowiska 124(10), 107–114.
 
90.
Greinert, A., 2000c. Ecology and urban studies. VI. Lawns as a substantial element of urban greenery. Ecology in Border Region. IBEN, Gorzów Wielkopolski. 296–300. (in Polish).
 
91.
Greinert, A., 2000d. Ecology and urban studies. VII. Urban green areas in the light of Polish legal regulations. Ecology in Border Region. IBEN, Gorzów Wielkopolski. 163–166. (in Polish).
 
92.
Greinert, A., 2002. Böden Urbanisierter Räume am Beispel von Zielona Góra und Gorzów Wlkp. Grund und Bodenverunreinigung sowie deren Ausmass und Möglichkeiten der Beseitigung - IV Deutsch-Polnisches Symposium. Zielona Góra, 85–102. (in German).
 
93.
Greinert, A., 2003. Studies on soils of the Zielona Góra urban area. University of Zielona Góra Publ. House, Zielona Góra. (in Polish).
 
94.
Greinert, A., 2015. The heterogeneity of urban soils in the light of their properties. Journal of Soils and Sediments 15(8), 1725–1737. https://doi.org/10.1007/s11368....
 
95.
Greinert, A., 2017. Functions of soils in the urban environment, [In:] Maxine, J.L., Kye-Hoon, J.K., Morel, J.-L., Burghardt, W., Charzyński, P, Shaw, R.K., (Eds.), Soils within cities. Global approaches to their sustainable management - composition, properties, and functions of soils of the urban environment. Schweizerbart Science Publisher, 43–52.
 
96.
Greinert, A., Kostecki, J., 2019. Anthropogenic Materials as Bedrock of Urban Technosols, [In:] Vasenev et al., V., (eds.) Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services. Proceedings of the 9th SUITMA Congress. Berlin, Springer International Publishing AG, 11–20.
 
97.
Greinert, A., Fruzińska, R., Kostecki, J., 2013a. Urban soils in Zielona Góra, [In:] Charzyński, P., Hulisz, P., Bednarek, R., (eds.) Technogenic soils of Poland. Toruń, Polish Society of Soil Science, 31–54.
 
98.
Greinert, A., Drab, M., Kostecki, J., Fruzińska, R., 2013b. Post-mining soils in Łęknica region, [In:] Charzyński, P., Hulisz, P. Bednarek, R. (eds.), Technogenic soils of Poland. Toruń, Polish Society of Soil Science, 233–253.
 
99.
Greinert, A., Bazan-Krzywoszańska, A., Drab, M., Fiszer, J., Gontaszewska, A., Jachimko, B., Jędrczak, A., Kraiński, A., Krzaklewski, W., Maciantowicz, M., Naworyta, W., Pietrzykowski, M., Skiba, M., Uzarowicz, Ł., 2015. Wydobycie węgla brunatnego i rekultywacja terenów pokopalnianych w regionie lubuskim. University of Zielona Góra Publ. House, 350 pp.
 
100.
Greinert, A., Drab, M., Śliwińska, A., 2018. Storage capacity of organic carbon in the reclaimed post-mining technosols. Environment Protection Engineering 44(1), 117–127, https://doi.org/10.5277/epe180....
 
101.
Greinert, H., 1988. Charakterystyka właściwości gleb powstałych w wyniku rekultywacji terenów po eksploatacji węgla brunatnego w rejonie Łęknicy. Zeszyty Naukowe WSInż. w Zielonej Górze, Zielona Góra 84, 93–104.
 
102.
Greinert, H., 1995. Wpływ podwyższonego poziomu nawożenia NPK na efektywność leśnej rekultywacji zwałowisk po kopalni węgla brunatnego. ZPPNR, z. 418, cz. 2, 637–642.
 
103.
Greinert, H., 1996. Rekultywacja leśna utworów pokopalnianych w rejonie Łęknicy. Zeszyty Naukowe PZ, 114. Inżynieria Środowiska 6, 91–111.
 
104.
Greinert, H., 1997. Problemy związane z rekultywacją terenów pogórniczych na Środkowym Nadodrzu. II Światowy Kongres Ochrony Środowiska na Terenach Górniczych, Katowice, T. 1, 535–542.
 
105.
Greinert, H., Drab, M., 2000. Physical properties of the soil formed as a result of recultivation of sand-pits in the Bóbr river valley. Acta Agrophysica 35, 77–84.
 
106.
Greinert, H., Drab, M., Greinert, A., 2009. Studies on the effectiveness of forest restoration of the phytotoxic acid Miocene sands dumps of the former lignite mine in Łęknica. Oficyna Wyd. Uniwersytetu Zielonogórskiego, Zielona Góra, 173 pp. (in Polish).
 
107.
Gwiżdż, M., Kabała, C., 2011. Skuteczność rekultywacji biologicznej składowisk odpadów z górnictwa węgla kamiennego. Przegląd Górniczy 67(6), 103–106.
 
108.
Gwiżdż, M., Pruchniewicz, D., Kabała, C., Szopka, K., 2010. Kierunki docelowego zagospodarowania składowisk odpadów wydobywczych na przykładzie wybranych obiektów Wałbrzyskiego i Rybnickiego Okręgu Węglowego. Przegląd Górniczy 66, 78–85.
 
109.
Hołtra, A., Zamorska-Wojdyła, D., 2018. The input of trace elements from the motor transport into urban soils of Wrocław, Poland. Science of the Total Environment 631-632, 1163–1174. https://doi.org/10.1016/j.scit....
 
110.
Hulisz, P., Michalski, A., Dąbrowski, M., Kusza, G., Łęczyński, L., 2015. Human-induced changes in the soil cover at the mouth of the Vistula River Cross-Cut. Soil Science Annual 66(2), 67–74. https://doi.org/10.1515/ssa-20....
 
111.
Hulisz, P., Charzyński, P., Greinert, A., 2018a. Urban soil resources of medium-sized cities in Poland: a comparative case study of Toruń and Zielona Góra. Journal of Soils and Sediments 18, 358–372. https://doi.org/10.1007/s11368....
 
112.
Hulisz, P., Pindral, S., Kobierski, M., Charzyński, P., 2018b. Technogenic layers in organic soils as a result of the impact of the soda industry. Eurasian Soil Science 51(10), 1133–1141. https://doi.org/10.1134/S10642....
 
113.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
 
114.
Jankowski, M., Sewerniak, P., 2013. Soils of bare lands in the Torun military area [In:] Charzyński, P., Hulisz, P., Bednarek, R., (eds.) Technogenic soils of Poland. Toruń, Polish Society of Soil Science, 323–343.
 
115.
Jankowski, M., Bednarek, R., Jaworska, M., 2013. Soils constructed on the 19th century fortifications in Torun. [In:] Charzyński, P., Hulisz, P., Bednarek, R., (eds.) Technogenic soils of Poland. Toruń, Polish Society of Soil Science, 345–357.
 
116.
Jerzykowska, I., Majzlan, J., Michalik, M., Gottlicher, J., Steininger, R., Błachowski, A., Ruebenbauer, K., 2014. Mineralogy and speciation of Zn and As in Fe-oxide-clay aggregates in the mining waste at the MVT Zn-Pb deposits near Olkusz, Poland. Chemie der Erde – Geochemistry, 74, 393–406. https://doi.org/10.1016/j.chem....
 
117.
Józefowska, A., Pietrzykowski, M., Woś, B., Cajthaml, T., Frouz, J., 2017. The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma 292, 9–16. https://doi.org/10.1016/j.geod....
 
118.
Józefowska, A., Sokołowska, J., Woźnica, K., Woś, B., Pietrzykowski, M., 2019. Tree species and soil substrate affect buffer capacity of anthroposols in afforested postmine sites in Poland. Journal of Soil and Water Conservation 74, 372-379. https://doi.org/10.2489/jswc.7....
 
119.
Józefowska, A., Woś, B., Pietrzykowski, M., 2016. Tree species and soil substrate effects on soil biota during early soil forming stages at afforested mine sites. Applied Soil Ecology 102, 70-79. https://doi.org/10.1016/j.apso....
 
120.
Józefowska, A., Woś, B., Pietrzykowski, M., Schlaghamerský, J., 2020. Colonisation by enchytraeids as a suitable indicator of successful biological reclamation of post-mining technosols using alders. Applied Soil Ecology 145. https://doi.org/10.1016/j.apso....
 
121.
Kabała, C., 1995. Próba określenia tendencji zmian właściwości gleb Tomaszowa Mazowieckiego. ZPPNR, 418, 323–328. (in Polish with English abstract).
 
122.
Kabała, C., Buczak, M., Gałka, B., Chodak, T., 2010. Anthropogenic transformations and classification of the soils in rural park in Wroclaw-Pawlowice. Roczniki Gleboznawcze – Soil Science Annual 61(4), 69–77. (in Polish with English abstract).
 
123.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł., Waroszewski, J., 2019. Polish Soil Classification, 6th edition - principles, classification. Soil Science Annual 70(2), 71–97. https://doi.org/10.2478/ssa-20....
 
124.
Kabała, C., Chodak, T., 2002. Gleby. W: Środowisko Wrocławia. Dolnośląska Fundacja Ekorozwoju, Wrocław, 66–73.
 
125.
Kabala, C., Chodak, T., Szerszen, L., Karczewska, A., Szopka, K., Fratczak, U., 2009. Factors influencing the concentration of heavy metals in soils of allotment gardens in the city of Wroclaw, Poland. Fresenius Environmental Bulletin 18(7), 1118–1124.
 
126.
Kabala, C., Galka, B., Jezierski, P., 2020. Assessment and monitoring of soil and plant contamination with trace elements around Europe’s largest copper ore tailings impoundment. Science of The Total Environment, 738, 139918. https://doi.org/10.1016/j.scit....
 
127.
Kabala, C., Galka, B., Labaz, B., Anjos, L., de Souza Cavassani, R., 2018. Towards more simple and coherent chemical criteria in a classification of anthropogenic soils: A comparison of phosphorus tests for diagnostic horizons and properties. Geoderma 320, 1–11. https://doi.org/10.1016/j.geod....
 
128.
Kabala, C., Karczewska, A., Szopka, K., Wilk, J., 2011. Copper, zinc, and lead fractions in soils long-term irrigated with municipal wastewater. Communications in Soil Science and Plant Analysis 42(8), 905–919. https://doi.org/10.1080/001036....
 
129.
Kabala, C., Szlachta, T., 2000. Całkowita zawartość oraz formy rozpuszczalne pierwiastków śladowych w odpadach serpentynitowych kopalni Nasławice. Zeszyty Problemowe Postępów Nauk Rolniczych 471(2), 959–966.
 
130.
Kabała, C., Wilk, J., 2004. Sequential extraction of iron and zinc in soils irrigated with municipal wastewater. Roczniki PZH 55, 133–141.
 
131.
Kabała, C., Greinert, A., 2020. Technogenic soils – a group soil of the year 2020 in Poland. Concept, properties and classification of technogenic soils in Poland. Soil Science Annual, this issue.
 
132.
Kabata-Pendias, A., 1977. Accumulation of heavy metals by plants grown on gangue slurries of a copper mine. Roczniki Gleboznawcze – Soil Science Annual 28(2), 141–154. (in Polish with English abstract).
 
133.
Karczewska, A., 1999. Metale ciężkie w glebach i roślinach na hałdach pogórniczych dawnych ośrodków górnictwa i hutnictwa miedzi w Parku Krajobrazowym Chełmy. Ochrona Środowiska i Zasobów Naturalnych 18, 177–186.
 
134.
Karczewska, A., 2014. Historically contaminated sites and their remediation in the light of Act on environmental protection amended in 2014 – selected cases from South-Western Poland. Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocawiu, Rolnictwo 607.
 
135.
Karczewska, A., Bogda, A., 2006. Heavy metals in soils of former mining areas in the Sudety Mountains–their forms and solubility. Polish Journal of Environmental Studies 15(2a), 104–110.
 
136.
Karczewska, A., Milko, K., 2010. Effects of chelating agents on copper, lead and zinc solubility in polluted soils and tailings produced by copper industry. Ecological Chemistry and Engineering - A 17(4-5), 395–403.
 
137.
Karczewska, A., Kabała, C., 2017. Environmental risk assessment as a new basis for evaluation of soil contamination in Polish law. Soil Science Annual 68(2), 67–80. https://doi.org/10.1515/ssa-20....
 
138.
Karczewska, A., Bogda, A., Kurnikowska, B., 2001. Nickel, chromium, lead and cadmium in soils and common plant species in the area of nickel mining and smelting (Szklary, SW Poland). Proceedings of 6th ICOBTE, Guelph, GP327, 570.
 
139.
Karczewska, A., Bogda, A., Gałka, B., Krajewski, J., 2005. Assessment of environmental hazards in the vicinity of polymetallic ore deposits Żeleźniak (Wojcieszów-Kaczawskie Mts, SW Poland). Wyd. Akademii Rolniczej we Wrocławiu, 262.
 
140.
Karczewska, A., Bogda, A., Krysiak, A., 2007. Arsenic in soils in the areas of former mining and mineral processing in Lower Silesia, southwestern Poland. Trace Metals and other Contaminants in the Environment 9, 411–440. https://doi.org/10.1016/S1875-....
 
141.
Karczewska, A., Gersztyn, L., Galka, B., 2011. Wpływ różnie ustabilizowanych osadów ściekowych na rozpuszczalność Cu, Pb i As w osadach poflotacyjnych przemysłu miedziowego i arsenowego. Zeszyty Problemowe Postępów Nauk Rolniczych 564, 103–113.
 
142.
Karczewska, A., Gersztyn, L., Galka, B., Juszczyszyn, M., Kantek, K., 2013. Effects of sewage sludge application on arsenic species in polluted soils. Fresenius Environmental Bulletin 22(4), 962–967.
 
143.
Karczewska, A., Kaszubkiewicz, J., Kabała, C., Jezierski, P., Spiak, Z., Szopka, K., 2017. Tailings impoundments of Polish copper mining industry – environmental effects, risk assessment and reclamation. [In:] Bech, J., Bini, C., Pashkevich, M. (eds.), Assessment, restoration and reclamation of mining influenced soils. Academic Press, pp. 149–202.
 
144.
Karczewska, A., Lewińska, K., Siepak, M., Gałka, B., Dradrach, A., Szopka, K., 2018. Transformation of beech forest litter as a factor that triggers arsenic solubility in soils developed on historical mine dumps. Journal of Soils and Sediments 18(8), 2749–2758. https://doi.org/10.1007/s11368....
 
145.
Karczewska, A., Lewińska, K., Siepak, M., Gałka, B., 2019. Lanthanides in soils of historical mining sites in Poland. Polish Journal of Environmental Studies 28(3), 1517–1522. https://doi.org/10.15244/pjoes....
 
146.
Kasowska, D., Gediga, K., Spiak, Z., 2018. Heavy metal and nutrient uptake in plants colonizing post-flotation copper tailings. Environmental Science and Pollution Research 25(1), 824–835. https://doi.org/10.1007/s11356....
 
147.
Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios-Rybicka, E., Bril, H., Puziewicz, J., 2008. Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Chemosphere 73, 776–784. https://doi.org/10.1016/j.chem....
 
148.
Kierczak, J., Potysz, A., Pietranik, A., Tyszka, R., Modelska, M., Néel, C., Ettler, V., Mihaljevič, M., 2013. Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland). Journal of Geochemical Exploration 124, 183–194. https://doi.org/10.1016/j.gexp....
 
149.
Kochanowska, K., Kusza, G., 2010. Wpływ zasolenia na właściwości fizyko-chemiczne gleb Opola w latach 1994 i 2009. Inżynieria Ekologiczna 23, 14–21. (in Polish with English abstract).
 
150.
Komornicki, T., 1986. Soils of the Planty park in Kraków. Roczniki Gleboznawcze – Soil Science Annual 37(4), 187–200. (in Polish with English abstract).
 
151.
Konecka-Betley, K., Janowska, E., Łuniewska-Broda, J., Szpotański, M., 1984. Wstępna klasyfikacja gleb aglomeracji warszawskiej. Roczniki Gleboznawcze – Soil Science Annual 35(2), 151–163. (in Polish with English and Russian abstract).
 
152.
Kordas, L., Tasz, W., 2012. Plonowanie oraz zawartość makroelementów w wybranych roślinach energetycznych uprawianych na zmodyfikowanych dodatkiem materiałów mineralnych i organicznych odpadach z flotacji rud miedzi. Fragmenta Agronomica 29(3), 103–113.
 
153.
Kostecki, J., Greinert, A., Wasylewicz, R., Adam, R., Garbera, B., Knap, P., Ostapkowicz, M., Stanisławiak, B., 2015. Spatial distribution of heavy metals in the topsoil on roundabouts in Zielona Góra, Poland. Enviromental Protection and Natural Resources 26(2), 1–8.
 
154.
Kostecki, J., Greinert, A., Drab, M., Mik, Ł., 2020. Soil sealing on example of the Jędrzychów Residential Area in Zielona Góra, Poland. Civil and Environmental Engineering Reports 30(1), 53–63. https://doi.org/10.2478/ceer-2....
 
155.
Kowalik, S. Wójcik, J., 2005. Symptoms of the development of soil-making process under young reclamation forestations on the floor of the old working of the Sand Mine “Szczakowa”. Inżynieria Środowiska 10(2), 185–194 (in Polish).
 
156.
Kowalik, S., 2004. Chemical properties of anthrosoils of agricultural and forestry management of the waste heap of Sulphur Mine “Machów”. Roczniki Gleboznawcze - Soil Science Annual 55(2), 239–249. (in Polish with English abstract).
 
157.
Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., Waroszewski, J., 2016. Soil pollution indices conditioned by medieval metallurgical activity – A case study from Krakow (Poland). Environmental Pollution 218, 1023–1036. https://doi.org/10.1016/j.envp....
 
158.
Kozanecka, T., Czarnowska, K., Kwasowski, W., 2000. Accumulation of heavy metals In the soils near petrol stations in Warsaw. Roczniki Gleboznawcze – Soil Science Annual 51(1/2), 73–78. (in Polish with English abstract).
 
159.
Krawczyńska, M., Kołwzan, B., Gediga, K., Dziubek, A. M., Grabas, K., Karpenko, E., 2015. Evaluation of the possibility of phytostabilization of post-flotation tailing ponds. Environment Protection Engineering 41(1), 157–167.
 
160.
Krupski, M., Kabala, C., Sady, A., Gliński, R., Wojcieszak, J., 2017. Double-and triple-depth digging and Anthrosol formation in a medieval and modern-era city (Wrocław, SW Poland). Geoarchaeological research on past horticultural practices. Catena 153, 9–20. https://doi.org/10.1016/j.cate....
 
161.
Kruszewski, Ł., 2013. Supergene sulphate minerals from the burning coal mining dumps in the Upper Silesian Coal Basin, South Poland. International Journal of Coal Geology 105, 91–109. http://dx.doi.org/10.1016/j.co....
 
162.
Krysiak, A., Karczewska, A., 2007. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland. Science of the Total Environment 379(2-3), 190–200. https://doi.org/10.1016/j.scit....
 
163.
Krzaklewski, W., Barszcz, J., Małek, S., Kozioł, K., Pietrzykowski, M., 2004. Contamination of forest soils in the vicinity of the sedimentation pond after zinc and lead ore flotation (in the region of Olkusz, Southern Poland). Water, Air, and Soil Pollution 159, 151–164. https://doi.org/10.1023/B:WATE....
 
164.
Krzaklewski, W., Mikłaszewski, A., 1996. Rekultywacja zwałów nadkładu w górnictwie węgla brunatnego w Polsce. Pr. Nauk. Inst. Górnictwa Polit. Wrocł. 79, 215–218.
 
165.
Krzaklewski, W., Pietrzykowski, M. 2002. Selected physico-chemical properties of zinc and lead ore tailings and their biological stabilisation. Water Air and Soil Pollution 141(1-4), 125-142. https://doi.org/10.1023/A:1021....
 
166.
Krzaklewski, W., Pietrzykowski, M., Woś, B., 2012. Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench) on fly ash technosols at different substrate improvement. Ecological Engineering 49, 35–40. https://doi.org/10.1016/j.ecol....
 
167.
Krzaklewski, W., Wójcik, J., 2008. Zalesienia jako metoda rekultywacji terenów bezglebowych na wybranym przykładzie górnictwa odkrywkowego KWB “Adamów” Mat. VIII Symp. Ochrony Ekosystemów Leśnych. Zagrożenia ekosystemów leśnych przez człowieka. Wyd. SGGW, Warszawa.
 
168.
Kuc, P., Kordas, L., Lejcuś, K., 2019. Phytostabilisation of tailing ponds with use of water absorbing geocomposites and organic and mineral additives. Environment Protection Engineering 45(1), 71–81.
 
169.
Kukier, U., 1985. Stan zanieczyszczenia metalami ciężkimi wierzchniej warstwy gleb Lublina. Ann. UMCS, Sec. B, 219–228.
 
170.
Kukier, U., 1991. Metale ciężkie w atmosferze i glebach Lublina. Archiwum Ochrony Środowiska 2, 117–138.
 
171.
Kusza, G., Hulisz, P., Łęczyński, L., Michalski, A., Dąbrowski, M., Kłostowska, Ż., 2018. Application of magnetic susceptibility measurements for identification of technogenic horizons in soil profiles on the example of the Vistula River Cross-Cut area. [In:] Jeleńska, M., Łęczyński, L., Ossowski, T., (eds.), GeoPlanet: Earth and Planetary Sciences. Magnetometry in Environmental Sciences, 65–78.
 
172.
Kwasowski, W., Markiewicz, M., 2007. Content of heavy metals in soils of the kitchen garden nearby the accumulator factory in Piastów. Zeszyty Problemowe Postępów Nauk Rolniczych 520, 531–537.
 
173.
Kwasowski, W., Kozanecka, T., Górska, E., Gozdowski, D., Kowalczyk, P., 2016. Application of heavy metals in street dust in the monitoring of changes in environment. Fresenius Environmental Bulletin 25(1), 103–112.
 
174.
Lemanowicz, J., Brzezińska, M., Siwik-Ziomek, A., Koper, J., 2020. Activity of selected enzymes and phosphorus content in soils of former sulphur mines. Science of The Total Environment 708, 134545. https://doi.org/10.1016/j.scit....
 
175.
Lewińska, K., Karczewska, A., Siepak, M., Gałka, B., Stysz, M., Kaźmierowski, C., 2017. Recovery and leachability of antimony from mine and shooting range soils. Journal of Elementology 22(1), 70–90. https://doi.org/10.5601/jelem.....
 
176.
Lewińska, K., Karczewska, A., Siepak, M., Szopka, K., Gałka, B., Iqbal, M., 2019. Effects of waterlogging on the solubility of antimony and arsenic in variously treated shooting range soils. Applied Geochemistry 105, 7–16. https://doi.org/10.1016/j.apge....
 
177.
Licznar, S.E., Licznar, M., 2005. Wrocław agglomeration impact on humus horizons of the Szczytnicki Park's soil. Roczniki Gleboznawcze – Soil Science Annual 56(1/2), 113–118. (in Polish with English abstract).
 
178.
Licznar, S.E, Licznar, M., Licznar, P., 2007. Monitoring środowiska: Badania pokrywy glebowej Parku Szczytnickiego we Wrocławiu. Inst. Badań Systemowych PAN, Badania Systemowe 53, 104 pp.
 
179.
Likus-Cieślik, J., Pietrzykowski, M., 2017. Vegetation development and nutrients supply of trees in habitats with high sulfur concentration in reclaimed former sulfur mines Jeziórko (Southern Poland). Environmental Science and Pollution Research 24, 20556–20566. https://doi.org/10.1007/s11356....
 
180.
Likus-Cieślik, J., Pietrzykowski, M., Chodak, M., 2018. Chemistry of sulfur-contaminated soil substrate from a former Frasch extraction method sulfur mine leachate with various forms of litter in a controlled experiment. Water, Air, and Soil Pollution 229, 71. https://doi.org/10.1007/s11270....
 
181.
Likus-Cieślik, J., Pietrzykowski, M., Szostak, M., Szulczewski, M., 2017. Spatial distribution and concentration of sulfur in relation to vegetation cover and soil properties on a reclaimed sulfur mine site (Southern Poland). Environmental Monitoring and Assessment 189, 87. https://doi.org/10.1007/s10661....
 
182.
Likus-Cieślik, J., Smoliński, A., Pietrzykowski, M., Bąk, A., 2019. Sulphur contamination impact on seasonal and surface water chemistry on a reforested area of a former sulphur mine. Land Degradation and Development 30, 212–225. https://doi.org/10.1002/ldr.32....
 
183.
Łuczak, K., Kusza, G., 2019. Magnetic susceptibility in the soils along communication routes in the town of Opole. Journal of Ecological Engineering 20(2), 234–238. https://doi.org/10.12911/22998....
 
184.
Łuczak, K., Pisarek, I., Kusza, G., 2020. The use of mineral materials for salinity control in roadside soils. Archives of Environmental Protection 46(2), 83–90. https://doi.org/10.24425/aep.2....
 
185.
Łukasik, A., Szuszkiewicz, M., Magiera, T., 2015. Impact of artifacts on topsoil magnetic susceptibility enhancement in urban parks of the Upper Silesian conurbation datasets. Journal of Soils and Sediments 15, 1836–1846. https://doi.org/10.1007/s11368....
 
186.
Maciak, F., 1978. Effect of the seven-year recultivation on an ash dump of the Konin power plant on yielding of cocksfoot and some changes of soil. Roczniki Gleboznawcze – Soil Science Annual 29(3), 203–216. (in Polish with English abstract).
 
187.
Maciak, F., Liwski, S., Biernacka, E., 1974. Some physico-chemical and biochemical properties of the ash dumps after brown and hard coal. Roczniki Gleboznawcze – Soil Science Annual 25(3), 191–205. (in Polish with English abstract).
 
188.
Maciak, F., Liwski, S., Biernacka, E., 1976b. Agricultural recultivation on furnace waste (ash) dumps from brown and hard coal. Part II. Chemical composition of plants cultivated on brown and hard coal ash dumps. Roczniki Gleboznawcze – Soil Science Annual 27(4), 171–187. (in Polish with English abstract).
 
189.
Maciak, F., Liwski, S., Biernacka, E., 1976c. Agricultural recultivation of furnace waste (ash) dumps from brown and hard coal. Part III. Course of soil-forming processes in ash dumps under influence of grass and leguminous vegetation. Roczniki Gleboznawcze – Soil Science Annual 27(4), 189–209. (in Polish with English abstract).
 
190.
Maciak, F., Liwski, S., Jeżewski, Z., 1979. Recultivation of a brown coal dump at the Konin power plant by means of planting of trees and shrubs. Roczniki Gleboznawcze – Soil Science Annual 30(3), 179–198. (in Polish with English abstract).
 
191.
Maciak, F., Liwski, S., Prończuk, J., 1976a. Agricultural recultivation of furnace waste (ash) dumps from brown and hard coal. Part I. Vegetation growth on ash dumps depending on agronomic measures and fertilization. Roczniki Gleboznawcze – Soil Science Annual 27(4), 149–169. (in Polish with English abstract).
 
192.
Maciejewska, A., Bogda, A., 2003. Changes of chosen properties of soils of coal mining stores in Walbrzych region under vegetation influence. Zeszyty Problemowe Postępów Nauk Rolniczych 493, 923–929.
 
193.
Magiera, T., Strzyszcz, Z., 2000. Using of field magnetometry in estimation of urban soil degradation. Proceedings of First International Conference on Soils of Urban, Industrial, Traffic and Mining Areas, vol. 1. Universitat-GH Essen, Essen, Germany, 105–110.
 
194.
Magiera, T., Strzyszcz, Z., Kapička, A., Petrovský, E., 2006. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma 130, 299–311. https://doi.org/10.1016/j.geod....
 
195.
Magiera, T., Parzentny, H., Łukasik, A., 2016a. The influence of the wind direction and plants on the variability of topsoil magnetic susceptibility in industrial and urban areas of southern Poland. Environmental Earth Sciences 75, 213. https://doi.org/10.1007/s12665....
 
196.
Magiera, T., Mendakiewicz, M., Szuszkiewicz, M., Jabłońska, M. Chróst, L., 2016b. Technogenic magnetic particles in soils as evidence of historical mining and smelting activity: a case of the Brynica River Valley, Poland. Science of the Total Environment 566-567, 536–551. https://doi.org/10.1016/j.scit....
 
197.
Majgier, L., Rahmonov, O., 2012. Selected chemical properties of necrosols from the abandoned cemeteries Słabowo and Szymonka (Great Mazurian Lakes District). Bulletin of Geography, Physical Geography Series 5(1), 43–55. https://doi.org/10.2478/v10250....
 
198.
Majgier, L., Rahmonov, O., Bednarek, R., 2014. Features of abandoned cemetery soils on sandy substrates in Northern Poland. Eurasian Soil Science 47, 621–629. https://doi.org/10.1134/S10642....
 
199.
Malczyk, P., Kędzia, W., Nowak, M., 1996. Heavy metals in soils of the Bydgoszcz city. Roczniki Gleboznawcze – Soil Science Annual 47(3-4), 195–202. (in Polish with English abstract).
 
200.
Marczyk, M., Kaszubkiewicz, J., Patrzałek, A., Bartoszczuk, P., 2013. Dynamika zawartości niektórych metali ciężkich i właściwości fizyczno-chemicznych rekultywowanych odpadów poflotacyjnych. Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu, Rolnictwo 592.
 
201.
Markiewicz, M., Hulisz, P., Charzyński, P., Piernik, A., 2018. Characteristics of soil organic matter of edifisols – An example of techno humus system. Applied Soil Ecology 123, 509–512. https://doi.org/10.1016/j.apso....
 
202.
Mazurek, R., Kowalska, J., Gąsiorek, M., Setlak, M., 2016. Micromorphological and physico-chemical analyses of cultural layers in the urban soil of a medieval city – A case study from Krakow, Poland. Catena 141, 73–84. https://doi.org/10.1016/j.cate....
 
203.
Mendyk, Ł., Charzyński, P., 2016. Soil sealing degree as factor influencing urban soil contamination with polycyclic aromatic hydrocarbons (PAHs). Soil Science Annual 67(1), 17–23. https://doi.org/10.1515/ssa-20....
 
204.
Migaszewski, Z., Gałuszka, A., Dołęgowska, S., 2015. The use of FPXRF in the determinations of selected trace elements in historic mining soils in the Holy Cross Mts., south-central Poland. Geological Quarterly 59(2), 248–256. https://gq.pgi.gov.pl/article/....
 
205.
Musielok, Ł., Drewnik, M., Stolarczyk, M., Gus, M., Bartkowiak, S., Kożyczkowski, K., Lasota, J., Motak, A., Szczechowska, K., Wątły, M., 2018. Rates of anthropogenic transformation of soils in the Botanical Garden of Jagiellonian University in Kraków (Poland). Catena 170, 272–282. https://doi.org/10.1016/j.cate....
 
206.
Oktaba, L., Odrobińska, D., Uzarowicz, Ł., 2018. The impact of different land uses in urban area on humus quality. Journal of Soils and Sediments 18(8), 2823–2832. https://doi.org/10.1007/s11368....
 
207.
Oktaba, L., Paziewski, K., Kwasowski, W., Kondras, M., 2014. The effect of urbanization on soil properties and soil organic carbon accumulation in topsoil of Pruszków - a medium-sized city in the Warsaw Metropolitan Area, Poland. Soil Science Annual 65(1), 10–17. https://doi.org/10.2478/ssa-20....
 
208.
Oleszczuk, P., Baran, S., 2005. The content of polycyclic aromatic hydrocarbons in soils under different anthropogenic influence. Roczniki Gleboznawcze – Soil Science Annual 56(3/4), 67–77. (in Polish with English abstract).
 
209.
Orzechowski, M., Smólczyński, S., Wyrzykowski, A., 2008. Soil properties of reclaimed sites of sand and gravel post-mine “Sarnowo” in mazowieckie voivodeship. Roczniki Gleboznawcze – Soil Science Annual 59(2), 170–176. (in Polish with English abstract).
 
210.
Pająk, M., Błońska, E., Frąc, M., Oszust, K., 2016. Functional diversity and microbial activity of forest soils that are heavily contaminated by lead and zinc. Water Air and Soil Pollution 227, 348. https://doi.org/10.1007/s11270....
 
211.
Pająk, M., Błońska, E., Szostak, M., Gąsiorek, M., Pietrzykowski, M., Urban, O., Derbis, P., 2018. Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water Air and Soil Pollution 229, 392. https://doi.org/10.1007/s11270....
 
212.
Pająk, M., Krzaklewski, W., 2006. Selected chemical properties of initial soils on the outside spoil bank of the “Bełchatów” Mine. Roczniki Gleboznawcze – Soil Science Annual 57(1/2), 158–163. (in Polish with English abstract).
 
213.
Pardela, Ł., Kowalczyk, T., Bogacz, A., Kasowska, D., 2020. Sustainable green roof ecosystems: 100 years of functioning on fortifications – A case study. Sustainability 12(11), 4721. https://doi.org/10.3390/su1211....
 
214.
Pasieczna, A., 2003. Atlas zanieczyszczeń gleb miejskich w Polsce. PIG, Warszawa. (in Polish).
 
215.
Piernik, A., Hulisz, P., Rokicka, A., 2015. Micropattern of halophytic vegetation on technogenic soils affected by the soda industry. Soil Science and Plant Nutrition 61, Suppl. 1, 98–112. https://doi.org/10.1080/003807....
 
216.
Pietranik, A., Kierczak, J., Tyszka, R., Schulz, B., 2018. Understanding heterogeneity of a slag-derived weathered material: The role of automated SEM-EDS analyses. Minerals 8, 1–19. https://doi.org/10.3390/min811....
 
217.
Pietrzykowski, M., 2014. Soil quality index as a tool for Scots pine (Pinus sylvestris) monoculture conversion planning on afforested, reclaimed mine land. Journal of Forestry Research 25(1), 63–74. https://doi.org/10.1007/s11676....
 
218.
Pietrzykowski, M., Krzaklewski, W., 2007. Soil organic matter, C and N accumulation during natural succession and reclamation in an opencast sand quarry (southern Poland). Archives of Agronomy and Soil Science 53, 473–483.
 
219.
Pietrzykowski, M., Daniels, W.L., 2014. Estimation of carbon sequestration by pine (Pinus sylvestris L.) ecosystems developed on reforested post-mining sites in Poland on differing mine soil substrates. Ecological Engineering 73, 209–218. https://doi.org/10.1016/j.ecol....
 
220.
Pietrzykowski, M., Likus-Cieślik, J., 2018. Comprehensive study of reclaimed soil, plant, and water chemistry relationships in highly S-contaminated post sulfur mine site Jeziórko (Southern Poland). Sustainability (Switzerland) 10, 2442. https://doi.org/10.3390/su1007....
 
221.
Pietrzykowski, M., Krzaklewski, W., Gaik, G., 2010a. Assessment of forest growth with plantings dominated by scots pine (Pinus sylvestris L.) on experimental plots on a fly ash disposal site at the Bełchatów Power Plant. University of Zielona Góra, Scientifical Reports, Environmental Engineering 137(17), 64−74. (in Polish with English abstract).
 
222.
Pietrzykowski, M., Pająk, M., Krzaklewski, W., 2010b. The assessment of possibility of using soil quality estimation numerical methods based on the Forest Soil Trophism Index (ITGL) and Soil Site Index (SIG) for description of habitat conditions on spoil heap KWB “Bełchatów” reclaimed to forest. Gospodarka Surowcami Mineralnymi 26(3), 155−165. (in Polish with English abstract).
 
223.
Pietrzykowski, M., Krzaklewski, W., Piechnik, Ł., 2011. Soil characteristics on afforested areas after calamine mining. Roczniki Gleboznawcze – Soil Science Annual 62(2), 325–334. (in Polish with English abstract).
 
224.
Pietrzykowski, M., Krzaklewski, W., Woś, B., 2013. Concentration of trace elements (Mn, Zn, Cu, Cd, Pb, Cr) in alder (Alnus sp.) leaves used as phytomelioration species on fly ash disposal. University of Zielona Góra, Scientifical Reports, Environmental Engineering 151(31), 26−34. (in Polish with English abstract).
 
225.
Pietrzykowski, M., Gruba, P., Sproull, G., 2017. The effectiveness of Yellow lupine (Lupinus luteus L.) green manure cropping in sand mine cast reclamation. Ecological Engineering 102, 72–79.
 
226.
Pietrzykowski, M., Woś, B., Pająk, M., Wanic, T., Krzaklewski, W., Chodak, M., 2018a. Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10 years of the experiment. Environmental Science and Pollution Research 25, 17091–17099. https://doi.org/10.1007/s11356....
 
227.
Pietrzykowski, M., Woś, B., Pająk, M., Wanic, T., Krzaklewski, W., Chodak, M., 2018b. The impact of alders (Alnus spp.) on the physico-chemical properties of technosols on a lignite combustion waste disposal site. Ecological Engineering 120, 180–186. https://doi.org/10.1016/j.ecol....
 
228.
Pindral, S, Kot, R, Hulisz, P, Charzyński, P., 2020. Landscape metrics as a tool for analysis of urban pedodiversity. Land Degradation and Development, 1–14. https://doi.org/10.1002/ldr.36....
 
229.
Piotrowska-Długosz, A., Charzyński, P., 2015. The impact of the soil sealing degree on microbial biomass, enzymatic activity, and physicochemical properties in the Ekranic Technosols of Toruń (Poland). Journal of Soils and Sediments 15, 47–59. https://doi.org/10.1007/s11368....
 
230.
Plak, A., 2018. Functions of the city and the content and distribution of heavy metals, metalloids and rare earth elements in urban soils. UMCS in Lublin Publ. House, 294 pp.
 
231.
Polish Soil Classification (Systematyka Gleb Polski), 2011. Roczniki Gleboznawcze – Soil Science Annual 62(3), 1–193. (in Polish with English summary).
 
232.
Polish Soil Classification (Systematyka Gleb Polski), 2019. Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław –Warszawa: 235 pp. (in Polish with English summary).
 
233.
Potysz, A., Grybos, M., Kierczak, J., Guibaud, G., Fondaneche, P., Lens, P.N.L., van Hullebusch, E.D., 2017. Metal mobilization from metallurgical wastes by soil organic acids. Chemosphere 178, 197–211. https://doi.org/10.1016/j.chem....
 
234.
Potysz, A., Kierczak, J., Grybos, M., Pędziwiatr, A., van Hullebusch, E.D., 2018. Weathering of historical copper slags in dynamic experimental system with rhizosphere-like organic acids. Journal of Environmental Management 222, 325–337. https://doi.org/10.1016/j.jenv....
 
235.
Potysz, A., Pędziwiatr, A., Hedwig, S., Lenz, M., 2019. Rapid metal mobilisation through litter, water and bioweathering as the legacy of historical copper smelting. Journal of Geochemical Exploration 206, 106364. https://doi.org/10.1016/j.gexp....
 
236.
Rachwał, M., Magiera, T., Wawer, M., 2015. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Chemosphere 138, 863–873. https://doi.org/10.1016/j.chem....
 
237.
Rachwał, M., Wawer, M., Magiera, T., Steinnes, E., 2017. Integration of soil magnetometry and geochemistry for assessment of human health risk from metallurgical slag dumps. Environmental Science and Pollution Research 24, 26410–26423. https://doi.org/10.1007/s11356....
 
238.
Racinowski, R., 1976. Wprowadzenie do fizjografii urbanistycznej. Wyd. Pol. Szczec., Szczecin, 236 pp.
 
239.
Rosik-Dulewska, C., Dulewski, J., 1988. Estimation of fodder quality of plants cultivated on hard coal dumps of the “Halemba” power plant. Roczniki Gleboznawcze – Soil Science Annual 39, 265–285. (in Polish with English and Russian abstract).
 
240.
Roszyk, E., Roszykowa, S., 1975. Ołów w glebach i roślinach w pobliżu dróg na terenie Wrocławia. Roczniki Gleboznawcze – Soil Science Annual 26(1), 177–185. (in Polish with English and Russian abstract).
 
241.
Roszyk, E., Strojek, Z., 1983. Influence of the industrial works producing zinc white and minium on the environment contamination. Roczniki Gleboznawcze – Soil Science Annual 34(1-2), 161–166. (in Polish with English and Russian abstract).
 
242.
Różański, S.Ł., Kwasowski, W., Peñas Castejón, J.M., Hardy, A., 2018. Heavy metal content and mobility in urban soils of public playgrounds and sport facility areas, Poland. Chemosphere 212, 456–466. https://doi.org/10.1016/j.chem....
 
243.
Siwik-Ziomek, A., Brzezińska, M., Lemanowicz, J., Koper, J., Szarlip, P., 2018. Biological parameters in technogenic soils of a former sulphur mine. International Agrophysics 32, 237–245. https://doi.org/10.1515/intag-....
 
244.
Skawina, T., 1958a. The processes of soil deterioration in mining and industrial regions. Roczniki Gleboznawcze – Soil Science Annual 7(suppl.), 131–148. (in Polish with English abstract).
 
245.
Skawina, T., 1958b. The development of soil formation processes on the waste heaps of the coal industry. Roczniki Gleboznawcze – Soil Science Annual 7(suppl.), 149–162. (in Polish with English abstract).
 
246.
Skawina, T., 1963. Rekultywacja terenów poeksploatacyjnych górnictwa odkrywkowego węgla brunatnego. Węgiel Brunatny 3, 151–242. (in Polish).
 
247.
Skawina, T., 1969. Results of researches on the model of re-vegetation of exploited mining areas. Zeszyty Naukowe AGH, nr 12, Geodezja, z. 12, Kraków, 115–136. (in Polish with English abstract).
 
248.
Skawina, T., Trafas M., 1971. Zakres wykorzystania i sposób interpretacji wyników badań geologicznych dla potrzeb rekultywacji. Ochrona Terenów Górniczych 16, 3–10. (in Polish).
 
249.
Skawina, T., Trafas, M., Gołda, T., 1974. Rekultywacja terenów pogórniczych kopalni pirytu „Siarkopol” w Rudkach k. Kielc. Zeszyty Naukowe AGH, nr 466, Sozologia i Sozotechnika, z. 4, Kraków, 9–21. (in Polish with English abstract).
 
250.
Skiba, S., Drewnik, M., Szymański, W., Żyła, M., 2013. Gleby. [In:] Degórska, B., Baścik, M. (eds.), Środowisko przyrodnicze Krakowa: zasoby-ochrona-kształtowanie. Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego, Kraków – Warszawa, 69–79.
 
251.
Smólczyński, S., Orzechowski, M., 2010. Water capacity and content of exchangeable cations in the soils of reclaimed sand and gravel post-mine areas. Roczniki Gleboznawcze – Soil Science Annual 61(3), 111–120. (in Polish with English abstract).
 
252.
Smólczyński, S., Orzechowski, M., Kalisz, B., Krupiński, K., 2020. Selected properties of reclaimed mine soils in the area of a former gravel mine in north-eastern Poland. Soil Science Annual 71(1), 66–75. https://doi.org/10.37501/soils....
 
253.
Spiak, Z., Gediga, K., Kaszubkiewicz, J., Grabas, K., Kołwzan, B., Mizera, W., Szpadt, R., 2012. Ocena możliwości wykorzystania odpadów do rewitalizacji zdegradowanych terenów poprzemysłowych. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, 1–158.
 
254.
Spychalski, W., Mocek, A., Gilewska, M., Owczarzak, W., Otremba, K., 2016. Możliwości rekultywacji i wykorzystania rolniczego gruntów pogórniczych na przykładzie doświadczenia prowadzonego na zwałowisku odkrywki węgla brunatnego Pątnów. Wyd. UP w Poznaniu, 136 pp.
 
255.
Stępniewska, H., Uzarowicz, Ł., Błońska, E., Kwasowski, W., Słodczyk, Z., Gałka, D., Hebda, A., 2020. Fungal abundance and diversity as influenced by properties of Technosols developed from mine wastes containing iron sulphides: A case study from abandoned iron sulphide and uranium mine in Rudki, south-central Poland. Applied Soil Ecology 145C, 103349. https://doi.org/10.1016/j.apso....
 
256.
Strączyńska, S., Strączyński, S., 2007. Characterisation of industrial soils under cultures of silver birch. Roczniki Gleboznawcze – Soil Science Annual 58(3/4), 126–131. (in Polish with English abstract).
 
257.
Strączyńska, S., Strączyński, S., 2008. Estimation of habitat conditions under trees planted on reclaimed power plant ash dumps. Roczniki Gleboznawcze – Soil Science Annual 59(2), 223–229. (in Polish with English abstract).
 
258.
Strączyńska, S., Strączyński, S., Cieścińska, B., Gwiżdż, M., 2009. Organic matter properties in the surface layer anthropogenic soils in Bełchatów region. Roczniki Gleboznawcze – Soil Science Annual 60(3), 139–144. (in Polish with English abstract).
 
259.
Strączyńska, S., Strączyński, S., Gazdowicz, W., 2004. The influence of cover vegetation on morphological characteristics and some properties of embankment formation of furnace discards dump. Roczniki Gleboznawcze – Soil Science Annual 55(2), 397–404. (in Polish with English abstract).
 
260.
Strzemski, M., 1955. Problems of urban soil science. Przegląd Geograficzny 27(3-4), 579–587. (in Polish with English and Russian summaries).
 
261.
Strzyszcz, Z., 1978. Chemiczne przemiany utworów karbońskich w aspekcie biologicznej rekultywacji i zagospodarowania centralnych zwałowisk. Prace i Studia PAN 19. (in Polish, with English summary).
 
262.
Strzyszcz, Z., 1980. Physical, physical-chemical and chemical properties of wastes after flotation of zinc and lead ores in aspect of their biological reclaiming. Archiwum Ochrony Środowiska 3-4, 19–50. (in Polish with English abstract).
 
263.
Strzyszcz, Z., 1988. Natural basis of dump reclamation in underground hard coal mining. Zeszyty Naukowe AGH, nr 1222, Sozologia i Sozotechnika 26, 159–173. (in Polish with English abstract).
 
264.
Strzyszcz, Z., 1989a. Anwesenheit des ferromagnetischen Eisen in oberschlesischen Waldböden und deren Ursachen. Mitteilungen der Bodenkundlichen Gesellschaft 59, 1197–1202. (in German).
 
265.
Strzyszcz Z., 1989b. Ferromagnetic properties of forest soils being under influence of industrial pollution. Air pollution and forest decline. [In] Proc. 14th Int. Meeting for Specialist in Air Pollution Effects on Forest Ecosystems, IUFRO, Interlaken, 201–269.
 
266.
Strzyszcz, Z., Harabin, Z. 2004. Reclamation and biological management of coal mining wastes taking into special consideration central heaps. Instytut Podstaw Inżynierii Środowiska PAN, Zabrze. (in Polish with English abstract).
 
267.
Strzyszcz, Z., Rachwał, M., 2010. Zastosowanie magnetometrii do monitoringu i oceny ekologicznej gleb na obszarach objętych wpływem emisji przemysłowych. Instytut Podstaw Inżynierii Środowiska PAN, Works & Studies 78, ss. 89.
 
268.
Strzyszcz, Z., Tölle, R., Katzur, J., 1988. Zur Anwendung eins hochfrequenten Messverfahrens für den Nachweiß von ferromagnetischen Eisen in der Umwelt. Archives of Environmental Protection 3-4, 137–143. (in German).
 
269.
Strzyszcz, Z., Magiera, T., Bzowski, Z., 1994. Magnetic susceptibility as indicator of soils contamination in some regions of Poland. Roczniki Gleboznawcze – Soil Science Annual 44(supl.), 85–93.
 
270.
Sutkowska, K., Teper, L., 2015. Impact of Solvay waste alkalinity on the leaching of heavy metals in a 100 year-old landfill. Proceedings of the World Congress on New Technologies (NewTech 2015), Barcelona, Spain, July 15–17, Paper No. 169.
 
271.
Sutkowska, K., Teper, L., Stania, M. 2015. Tracing potential soil contamination in the historical Solvay soda ash plant area, Jaworzno, Southern Poland. Environmental Monitoring and Assessment 187, 704. https://doi.org/10.1007/s10661....
 
272.
Swałdek, M., 1983. Przekształcenia pokrywy glebowej i zbiorowisk roślinnych w Staropolskim Okręgu Przemysłowym. Dokumentacja Geograficzna IGiPZ PAN, z. 4, pp. 96. (in Polish with English abstract).
 
273.
Swęd, M.K., Niedzielski, P., 2018. Geochemistry and mineralogy of technogenic soils developed on old mine heaps of abandoned iron ore mines in the Ławęczna area (Holy Cross Mountains, south-central Poland). Soil Science Annual 69(1), 28–38. https://doi.org/10.2478/ssa-20....
 
274.
Świątek, B., Woś, B., Chodak, M., Maiti, S.K., Józefowska, A., Pietrzykowski, M., 2019. Fine root biomass and the associated C and nutrient pool under the alder (Alnus spp.) plantings on reclaimed technosols. Geoderma 337, 1021–1027. https://doi.org/10.1016/j.geod....
 
275.
Świtoniak, M., Hulisz, P., Kałucka, I., Różański, S., 2011. Role of Scots pine monocultures on the formation of organic carbon resources in soils on an external dumping ground of the Bełchatów open-cast lignite mine. Roczniki Gleboznawcze – Soil Science Annual 62(2), 395–405. (in Polish with English abstract).
 
276.
Szafrański, C., Stachowski, P., 1997. Skład granulometryczny i właściwości fizykowodne rekultywowanych gruntów pogórniczych. Roczniki Akademii Rolniczej w Poznaniu – CCXCII, Seria Melior. Inż. Środ., 18, 91–101.
 
277.
Szerszeń, L., Chodak, T., Giernalczyk, M., 1994. Arsen w odpadach kopalni rud arsenowych i glebach w rejonie Złotego Stoku. Zeszyty Naukowe. Polska Akademia Nauk. Komitet Naukowy przy Prezydium PAN Człowiek i Środowisko 8, 51–53.
 
278.
Szopka, K., Bogda, A., Karczewska, A., Gałka, B., Wojtkowiak, M., Pruchniewicz, D., 2010. Properties of waste rock deposited on mine spoils of hard coal mines in Nowa Ruda with the perspective of their biological reclamation. Zeszyty Naukowe UZ, Inżynieria Środowiska 138 (18), 5–11. (in Polish with English abstract).
 
279.
Szuszkiewicz, M.M., Łukasik, A., Magiera, T., Szuszkiewicz, M., 2018. Technogenic Magnetic Particles of Topsoil from Different Sources of Emission – A case Study from Upper Silesian Conurbation. MATEC Web of Conferences 247, 00051. https://doi.org/10.1051/matecc....
 
280.
Trafas, M., 1988. Problemy i efekty rekultywacji osadników odpadów poflotacyjnych rud Zn i Pb na przykładzie osadnika ZG Trzebionka. Zeszyty Naukowe AGH, nr 1222, Sozologia i Sozotechnika, 26, 185–199.
 
281.
Trafas, M., 1996. Changes in the properties of post-flotation wastes due to vegetation introduced during process of reclamation. Applied Geochemistry 11(1–2), 181–185. https://doi.org/10.1016/0883-2....
 
282.
Trafas, M., Eckes, T., 2007. Soil-making aspects in the evaluation of artificial formations; focus on the wastes formed after the flotation of zinc and lead ores. Geomatics and Environmental Engineering 1(2), 97–110. (in Polish).
 
283.
Uzarowicz Ł., 2011. Technogenic soils developed on mine spoils containing iron sulfides in select abandoned industrial sites: Environmental hazards and reclamation possibilities. Polish Journal of Environmental Studies 20(3), 771–782.
 
284.
Uzarowicz, Ł., 2013. Microscopic and microchemical study of iron sulphide weathering in a chronosequence of technogenic and natural soils. Geoderma 197-198C, 137–150. https://doi.org/10.1016/j.geod....
 
285.
Uzarowicz, Ł., Maciejewska, A., 2012. Ocena właściwości technogenicznych utworów glebowych Technosols zawierających siarczki żelaza (Assessment of properties of technogenic soils Technosols containing iron sulfides). Roczniki Gleboznawcze - Soil Science Annual 63(3), 37–42. https://doi.org/12.2478/v10239....
 
286.
Uzarowicz, Ł., Skiba, S., 2011. Technogenic soils developed on mine spoils containing iron sulphides: Mineral transformations as an indicator of pedogenesis. Geoderma 163(1-2), 95–108. https://doi.org/10.1016/j.geod....
 
287.
Uzarowicz, Ł., Skiba, S., 2013. Technogenic soils developed from mine wastes containing iron sulphides in southern Poland. [In:] Technogenic soils of Poland (Ed. P. Charzyński, P. Hulisz, R. Bednarek), Polish Society of Soil Science, Toruń, 275–299.
 
288.
Uzarowicz, Ł., Zagórski, Z., 2015. Mineralogy and chemical composition of technogen ic soils (Technosols) developed from fly ash and bottom ash from selected thermal power stations in Poland. Soil Science Annual 66, 82–91. https://doi.org/10.1515/ssa-20....
 
289.
Uzarowicz, Ł., Skiba, S., Skiba, M., Michalik, M., 2008. Mineral transformations in soils on spoil heaps of an abandoned pyrite mine in Wieściszowice (Rudawy Janowickie Mts., Lower Silesia). Polish Journal of Soil Science 41(2), 183–193.
 
290.
Uzarowicz, Ł., Skiba, S., Skiba, M., Šegvić, B., 2011. Clay-mineral formation in soils developed in the weathering zone of pyrite-bearing schists: A case study from the abandoned pyrite mine in Wieściszowice, Lower Silesia, Poland. Clays and Clay Minerals 59(6), 581–594. https://doi.org/10.1346/CCMN.2....
 
291.
Uzarowicz, Ł., Šegvić, B., Michalik, M., Bylina, P., 2012. The effect of hydrochemical conditions and pH of the environment on phyllosilicate transformations in the weathering zone of pyrite-bearing schists in Wieściszowice (SW Poland). Clay Minerals 47(4), 401–417. https://doi.org/10.1180/claymi....
 
292.
Uzarowicz, Ł., Zagórski, Z., Mendak, E., Bartmiński, P., Szara, E., Kondras, M., Oktaba, L., Turek, A., Rogoziński, R., 2017. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis. Catena 157, 75–89. https://doi.org/10.1016/j.cate....
 
293.
Uzarowicz, Ł., Kwasowski, W., Śpiewak, O., Świtoniak, M., 2018a. Indicators of pedogenesis of Technosols developed in an ash settling pond at the Bełchatów thermal power station (central Poland). Soil Science Annual 69, 49–59. https://doi.org/10.2478/ssa-20....
 
294.
Uzarowicz, Ł., Skiba, M., Leue, M., Zagórski, Z., Gąsiński, A., Trzciński, J., 2018b. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution. Catena 162, 255–269. https://doi.org/10.1016/j.cate....
 
295.
Uzarowicz, Ł., Wolińska, A., Błońska, E., Szafranek-Nakonieczna, A., Kuźniar, A., Słodczyk, Z., Kwasowski, W., 2020. Technogenic soils (Technosols) developed from mine spoils containing Fe sulphides: microbiological activity as an indicator of soil development following land reclamation. Applied Soil Ecology 156C, 103699. https://doi.org/10.1016/j.apso....
 
296.
Warchulski, R., Mendecki, M., Gawęda, A., Sołtysiak, M., Gadowski, M., 2019. Rainwater-induced migration of potentially toxic elements from a Zn–Pb slag dump in Ruda Śląska in light of mineralogical, geochemical and geophysical investigations. Applied Geochemistry 109, 104396. https://doi.org/10.1016/j.apge....
 
297.
Wawer, M., Magiera, T., Ojha, G., Appel, E., Bućko, M., Kusza, G., 2015a. Characteristics of current roadside pollution using test-monitoring plots. Science of the Total Environment 505, 795–804. https://doi.org/10.1016/j.scit....
 
298.
Wawer, M., Magiera, T., Ojha, G., Appel, E., Kusza, G., Hu, S., Basavaiah, N., 2015b. Traffic-related pollutants in roadside soils of different countries in Europe and Asia. Water Air and Soil Pollution 226, 216. https://doi.org/10.1007/s11270....
 
299.
Wawer, M., Rachwał, M., Kowalska, J., 2017. Impact of noise barriers on the dispersal of solid pollutants from car emissions and their deposition in soil. Soil Science Annual 68(1), 19–26. https://doi.org/10.1515/ssa-20....
 
300.
Weber, J., Strączyńska, S., Kocowicz, A., Gilewska, M., Bogacz, A., Gwiżdż, M., Dębicka, M., 2015. Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation. Catena 133, 250–254. https://doi.org/10.1016/j.cate....
 
301.
Winiarek, P., Kruk, A., 2017. Pesticide residues in soils along railway lines. Soil Science Annual 68(4), 189–196. https://doi.org/10.1515/ssa-20....
 
302.
Wojcieszczuk, T., 1981. Ocena zasolenia gleb miejskich solami chlorkowymi, ich oddziaływanie na drzewa oraz możliwości zapobiegania skutkom nadmiernej akumulacji soli. Wyd. ZUP AR Szczecin, Nauka - Praktyce, 1–27. (in Polish with English abstract).
 
303.
Wojcieszczuk, T., 1982. Ilościowe zmiany Na, Ca, K i Cl w glebach o różnym stopniu zasolenia w obrębie miasta Szczecina. ZN AR Szczecin, Seria Rolnictwo, 28, 94, 281–293. (in Polish with English abstract).
 
304.
Wolińska, A., Włodarczyk, K., Kuźniar, A., Marzec-Grządziel, A., Grządziel, J., Gałązka, A., Uzarowicz, Ł., 2020. Soil microbial community profiling and bacterial metabolic activity of Technosols as an effect of soil properties following land reclamation: a case study from the abandoned iron sulphide and uranium mine in Rudki (south-central Poland). Agronomy 10, 1795. https://doi.org/10.3390/agrono....
 
305.
Wójcik, J. Kowalik, S., 2006. The formation of selected properties of the initial soil on the waste heap from copper mining, under forest-directed reclamation. Inżynieria Środowiska 11(1), 87–99. (in Polish).
 
306.
Wójcik, J., 2003. Kształtowanie się wybranych właściwości fizycznych inicjalnych gleb na zwałowisku zewnętrznym KWB „Adamów”. Inżynieria Środowiska 8(2), 217–227. (in Polish with English abstract).
 
307.
Wójcik, J., Krzaklewski, W., 2007. Accumulation of organic matter in the initial soils on the external waste heap of the „Adamów” lignite mine. Roczniki Gleboznawcze – Soil Science Annual 58(3/4), 151–159. (in Polish with English abstract).
 
308.
Wójcik, J., Krzaklewski, W., 2019. Afforestation as a method of reclamation of soilless land in brown coal mining in Poland. Inżynieria Ekologiczna 20(1), 24–37. (in Polish with English abstract) https://doi.org/10.12912/23920....
 
309.
Wójcik, R., Zawadzki, Ł., 2011. Anion leachability from the top layer of the Cracow soda waste dumps. Environmental Protection and Natural Resources, 49, 433–442. (in Polish with English abstract).
 
310.
Woś, B., Józefowska, A., Pająk, M., Chodak, M., Frouz, J., Pietrzykowski, M., 2020. Carbon and macronutrient budgets in an alder plantation grown on a reclaimed combustion waste landfill. Forests 11, 430. https://doi.org/10.3390/f11040....
 
311.
Woś, B., Pietrzykowski, M., Józefowska, A., 2018. Reclaimed mine soil substrates and tree stands vs. successional forest floor vegetation: A case study of developing ecosystems on afforested mine sites. Ecological Engineering 120, 504-512. https://doi.org/10.1016/j.ecol....
 
312.
Woś, B., Pietrzykowski, M., Krzaklewski, W., 2014. Properties of humus in soils formed on afforested dumping ground of the sulphur mine. Sylwan 158, 893–900.
 
313.
Woś, B., Sroka, K., Józefowska, A., Pietrzykowski, M., 2019. Mercury concentration in Technosols and alder tissue from a plantation on a combustion waste disposal site. Water, Air, and Soil Pollution 230, 259. https://doi.org/10.1007/s11270....
 
314.
Wybieralski, J., Maciejewska, M., 1999. Ocena skażenia środowiska metalami ciężkimi w pobliżu stacji benzynowych Szczecina i okolic. Ekologia i Technika 7(1), 20–23. (in Polish with English abstract).
 
315.
Wysocki, W., 1988b. Rekultywacja składowisk odpadów elektrowni węglowych, Zeszyty Naukowe AGH, nr 1222, Sozologia i Sozotechnika, 26, 231–239. (in Polish with English abstract).
 
316.
Znamirowska-Karaś, I., 2001. The soil forming processes depending on the waste material of mica-schist, loam dumps in the Sudety Mts. Zeszyty Naukowe Uniwersytetu Zielonogórskiego 133, 95–102. (in Polish with English abstract).
 
317.
Znamirowska-Karaś, I., 2002. Procesy glebotwórcze i glebowe zachodzące na terenach zdegradowanych geotechnicznie. Cuprum 22, 3–93. (in Polish with English abstract).
 
318.
Żołnierz, L., Weber, J., Gilewska, M., Strączyńska, S., Pruchniewicz, D., 2016. The spontaneous development of understory vegetation on reclaimed and afforested post-mine excavation filled with fly ash. Catena 136, 84–90. https://doi.org/10.1016/j.cate....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top