PL EN
PRACA ORYGINALNA
Soil quality/health indicators in a disturbed ecosystem in southern Ecuador
 
Więcej
Ukryj
1
Environmental Management Career, Universidad Técnica Particular de Loja, Ecuador
 
2
DEPARTMENT OF BIOLOGICAL SCIENCES, Universidad Técnica Particular de Loja, Ecuador
 
 
Data nadesłania: 27-10-2020
 
 
Data ostatniej rewizji: 23-01-2021
 
 
Data akceptacji: 21-04-2021
 
 
Data publikacji online: 30-07-2021
 
 
Data publikacji: 11-11-2021
 
 
Autor do korespondencji
Leticia Salomé Jiménez Álvarez   

DEPARTMENT OF BIOLOGICAL SCIENCES, Universidad Técnica Particular de Loja, San Cayetano Alto, 11-01-608, Loja, Ecuador
 
 
Soil Sci. Ann., 2021, 72(2)135991
 
SŁOWA KLUCZOWE
STRESZCZENIE
Tropical ecosystems are under increasing pressure from changes in land use (Ch-LUs). These changes significantly alter the quality/health of the soil, thus minimizing the possibilities for further development and human well-being. This occurs in the buffer zone of the Podocarpus National Park (PNP), where the majority of the population has recently been affected by food insecurity. As a means of subsistence, peasant producers have implemented changes in land use to produce food that will improve their living conditions. In this context, the objectives of the study were: (i) to evaluate the effect of Ch-LUs on the main edaphic physical-chemical properties in a buffer zone of the Podocarpus National Park in Ecuador (PNP) and, (ii) to compare whether there is concordance between scientific knowledge and local knowledge with regards to soil fertility management indicators and practices. Soils were analyzed in the laboratory (bulk density (g cm-3), texture, pH, and total carbon (%)) and then compared with local knowledge through semi-structured interviews administered to farmers. The results revealed greater similarity between the uses of crops and pastures, compared to the use of forest, due to a greater alteration in the cultivated and pasture areas, presenting as changes within the soil quality indicators. By integrating the knowledge of the farmer with the scientist, it was shown that they do indeed identify with local indicators of soil quality visible in the field.
REFERENCJE (86)
1.
Aoki, M., Sereno, R., 2005. Modificaciones de la conductividad hidráulica y porosidad del suelo estimadas mediante infiltrómetro de Disco a Tensión. Agricultura Técnica 65(3), 295-305.
 
2.
Armenteras, D., Murcia, U., González, T., Barón, O., Arias, J., 2019. Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness. Global Ecology and Conservation 17, e00567. https://doi.org/10.1016/j.gecc....
 
3.
Barrera-Bassols, N., Zinck, J. A., 2003. Ethnopedology: A worldwide view on the soil knowledge of local people. Geoderma 111, 171–195. https://doi.org/10.1016/S0016-....
 
4.
Barrera-Bassols, N., Zinck, J., Ranst, E., 2006. Symbolism, knowledge and management of soil and land resources in indigenous communities: Ethnopedology at global, regional and local scales. Catena 65(2), 118–137. https://doi.org/10.1016/j.cate....
 
5.
Barrios, E., Trejo, M. T., 2003. Implications of local soil knowledge for integrated soil management in Latin America. Geoderma 111, (3–4), 217–231. https://doi.org/10.1016/S0016-....
 
6.
Barrios, E., Delve, RJ., Bekunda, M., Mowo, J., Agunda, J., Ramisch, J., Trejo, M., Thomas, R., 2006. Indicators of soil quality: A South–South development of a methodological guide for linking local and technical knowledge. Geoderma 135, 248–259. https://doi.org/10.1016/j.geod....
 
7.
Bezabih, J., Lemenih, M., Regassa, A., 2016. Farmers perception on soil fertility status of smallscale farming system in southwestern Ethiopia. Journal of Soil Science and Environmental Management 7(9), 143–153. https://doi.org/10.5897/JSSEM2....
 
8.
Bizoza, A. R., 2012. Three-stage analysis of the adoption of soil and water conservation in the highlands of Rwanda. Land Degradation and Development 25(4), 360–372. 2. https://doi.org/10.1002/ldr.21....
 
9.
Borrelli, P., Robinson, D., Fleischer, L., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V., Bagarello, V., Van Oost, K., Montanarella, L., Panagos, P., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8. https://doi.org/10.1038/s41467....
 
10.
Bouyoucos, G. J., 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal 43(9), 434–438. https://doi.org/10.2134/agronj...
 
11.
Brinkmann, K., Samuel, L., Peth, S., Buerkert, A., 2018. Ethnopedological knowledge and soil classification in SW Madagascar. Geoderma Regional 14, e00179. https://doi.org/10.1016/j.geod....
 
12.
Brovkin, V., Sitch, S., Von Bloh, W., Claussen, M., Bauer, E., Cramer, W., 2004. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biology 10(8), 1253–1266. https://doi.org/10.1111/j.1365....
 
13.
Buthelezi–Dube, N., Hughes, J., Muchaonyerwa, P., 2018. Indigenous soil classification in four villages of eastern South Africa. Geoderma 332, 84–99. https://doi.org/10.1016/j.geod....
 
14.
Carrion–Paladines, V., Garcia–Ruiz, R., 2016. Floristic Composition and Structure of a Deciduous Dry Forest from Southern Ecuador: Diversity and Aboveground Carbon Accumulation. International Journal of Current Research and Academic Review 4(12), 154–169. http://dx.doi.org/10.20546/ijc....
 
15.
Carrión-Paladines, V., Fries, A., Gómez-Muñoz, B., García-Ruiz, R. 2016. Agrochemical characterization of vermicomposts produced from residues of Palo Santo (Bursera graveolens) essential oil extraction. Waste management 58, 135–143. https://doi.org/10.1016/j.wasm....
 
16.
Carvajal, M., Alcaraz-López, C., Iglesias, M., Martínez–Ballasta, M., Carvajal, M., 2011. Absorción de CO2 por los cultivos más representativos de la región de Murcia. Horticultura 294, 58–63.
 
17.
Clocchiatti, A., Hannula, S.E., Berg, Van Den., Korthals, G., 2019. The hidden potential of saprotrophic fungi in arable soil: Patterns of short- term stimulation by organic amendments. Applied Soil Ecology 147, 1–11. https://doi.org/10.1016/j.apso....
 
18.
Cerdà, A., Rodrigo-Comino, J., Giménez-Morera, A., Novara, A., Pulido, M., Kapović-Solomun, M., Keesstra, S., 2018. Policies can help to apply successful strategies to control soil and water losses. The case of chipped pruned branches (CPB) in Mediterranean citrus plantations. Land Use Policy 75, 734–745. https://doi.org/10.1016/j.land....
 
19.
Danilo, H., Céspedes, D., 2016. Estudio de las propiedades físicas y químicas del suelo producidas por la quema controlada de vegetación en el Municipio De Cumaribo, Departamento Del Vichada, Maestria en Desarrollo sostenible y medio ambiente. Universidad de Caldas Facultad de Ciencias Contables Económicas y Administrativas.
 
20.
Dawis, B., 1974. Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America 38, 150–151. https://doi.org/10.2136/sssaj1....
 
21.
Dawoe, E.K., Quashie-Sam, J., Isaac, M., Oppong, S., 2012. Exploring farmers’ local Knowledge and perceptions of soil fertiliy and management in the ashanti region of Ghana. Geoderma 179-180, 96–103. https://doi.org/10.1016/j.geod....
 
22.
De Lima, N.D.S., Napiwoski, S.J., Oliveira, M.A., 2020. Human-wildlife conflict in the southwestern amazon: poaching and its motivations. Nature Conservation Research. Заповедная наука 5(1), 109–114. https://dx.doi.org/10.24189/nc....
 
23.
Desbiez, A., Matthews, R., Tripathi, B., Ellis-Jones, J., 2004. Perceptions and assessment of soil fertility by farmers in the mid-hills of Nepal. Agriculture, Ecosystems and Environment 103(1), 191–206. https://doi.org/10.1016/j.agee....
 
24.
Dollinger, J., Jose, S., 2018. Agroforestry for soil health. Agroforestry 92, 213-219. https://doi.org/10.1007/s10457....
 
25.
De Koning, G.H.J., Veldkamp, E., López‐Ulloa, M., 2003. Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Global Biogeochemical Cycles, 17(4). https://doi.org/10.1029/2003GB....
 
26.
De Moraes, M., Bebiasi, H., Carlesso, R., Franchini, J., Rodrigues, V., Bonini, F., 2016. Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil & Tillage Research 155, 351–362. https://doi.org/10.1016/j.stil....
 
27.
Foley, J., DeFries, R., Asner, G., Barford, C., Bonan, G., Carpenter, S., Chapin, F., Coe, M., Daily, G., Gibbs, H., Helkowski, J., Holloway, T., Howard, E., Kucharik, Ch., Monfreda, Ch., Pats, J., Prentice, I.C., Ramankutty, N., Snyder, P., 2005. Global consequences of land use. Science 309, 570–574. https://doi.org/10.1126/scienc....
 
28.
Fries, A., Silva, K., Pucha-Cofrep, F., Oñate-Valdivieso, F., Ochoa-Cueva, P., 2020. Water balance and soil moisture deficit of different vegetation units under semiarid conditions in the andes of southern Ecuador. Climate 8(2), 30. https://doi.org/10.3390/cli802....
 
29.
Fries, A.; Rollenbeck, R.; Göttlicher, D.; Nauss, T.; Homeier, J.; Peters, T.; Bendix, J., 2009. Thermal structure of a megadiverse Andean mountain ecosystem in southern Ecuador and its regionalization. 63(4), 321-335. https://doi.org/10.3112/erdkun....
 
30.
Gaglio, M., Aschonitis, V., Gissi, E., Castaldelli, G., Fano, E., 2016. Land use change effects on ecosystem services of river deltas and coastal wetlands: case study in Volano–Mesola–Goro in Po river delta (Italy). Wetlands Ecology and Management 25, 67–86. https://doi.org/10.1007/s11273....
 
31.
Gattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mäder, P., Stolze, M., Smith, P., Scialabba, N., Niggli, U., 2012. Enhanced top soil carbon stocks under organic farming. Proceedings of the National Academy of Sciences 109(44), 18226–18231. https://doi.org/10. 1073/pnas.1209429109/-/DCSupplemental.
 
32.
Geissert, D., Tapia, A., Negrete-Yankelevich, S., Manson, R., 2017. Efecto del manejo de la cobertura vegetal sobre la erosión hídrica en cafetales de sombra. Agrociencia 51(2), 1405–3195.
 
33.
Giertz, S., Junge, B., Diekkrüger, B., 2005. Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa. Physics and Chemistry of the Earth, Parts A/B/C, 30(8-10), 485-496. https://doi.org/10.1016/j.pce.....
 
34.
Gray, C. L., Bilsborrow, R. E., 2014. Consequences of out-migration for land use in rural Ecuador. Land Use Policy 36, 182-191. https://doi.org/10.1016/j.land....
 
35.
Guimarães, D., Gonzaga, M., Oliveira da Silva, T., Lima da Silva., T., Dias, N., Matias, M., 2013. Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research 126, 177–182. https://doi.org/10.1016/j.stil....
 
36.
Gutiérrez-Salazar, P., Medrano-Vizcaíno, P., 2019. The effects of climate change on decomposition processes in andean paramo ecosystem–synthesis, a systematic review. Applied Ecology and Environmental Research 17(2), 4957–4970. http://dx.doi.org/10.15666/aee....
 
37.
Han, X., Xu, C., Dungait, J.A., Bol, R., Wang, X., Wu, W., Meng, F., 2018. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis. Biogeosciences 15(7), 1933–1946. https://doi.org/10.5194/bg-15-....
 
38.
Harvey, C. A., Komar, O., Chazdon, R., Ferguson, B. G., Finegan, B., Griffith, D.M., Martínez-Ramos, M., Morales, H., Nigh, R., Soto-Pinto, L., Van Breugel, M., Wishnie, M., 2008. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conservation Biology 22(1), 8–15. https://doi.org/10.1111/j.1523....
 
39.
Henke, C., Poeplau, C., Don, A., Wesemael, M., Kögel–Knabner, I., 2019. A simple method to quantify labile and stable carbon in temperate agricultural soils. Geophysical Research Abstracts 21.
 
40.
Hribljan, J.A., Suárez, E., Heckman, K.A., Lilleskov, E.A., Chimner, R.A., 2016. Peatland carbon stocks and accumulation rates in the Ecuadorian páramo. Wetlands ecology and management, 24(2), 113–127. https://doi.org/10.1007/s11273....
 
41.
Inamhi, 2004 – 2013. Anuarios meteorológicos. Available at https://www.serviciometeorolog....
 
42.
Jaiyeoba, I.A., 1995. Changes in soil properties related to different land uses in part of the Nigerian semi‐arid Savannah. Soil Use and Management 11(2), 84–89. https://doi.org/10.1111/j.1475....
 
43.
Jarecki, M. K., Lal, R., 2003. Crop management for soil carbon sequestration. Critical Reviews in Plant Sciences 22(6), 471–502. https://doi.org/10.1080/713608....
 
44.
Jobbágy, E.G., Jackson, R.B., 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological applications 10(2), 423–436. https://doi.org/10.1890/1051-0....
 
45.
Kim, M., Min, H., Lee, S., Kim, J., 2018. A comparative study on Poaceae and Leguminosae forage crops for aided phytostabilization in Trace-Element-Contaminated soil. Agronomy 8(7), 105. https://doi.org/10.3390/agrono....
 
46.
Kindu, M., Schneider, T., Teketay, D., Knoke, T., 2013. Land use/land cover change analysis using object-based classification approach in Munessa-Shashemene landscape of the Ethiopian highlands. Remote Sensing 5(5), 2411–2435. https://doi.org/10.3390/rs5052....
 
47.
Kuria, A., 2018. Local indicators of soil quality determine restoration options and vary with degradation status and gender. World Agroforestry Centre 2. https://doi.org/10.34725/DVN/R....
 
48.
Kwiatkowski, C., Harasim, E., Staniak, M., 2020. Effect of catch crops and tillage systems on some chemical properties of loess soil in a short-term monoculture of spring wheat. Journal of Elementology 25(1), 35–43. https://doi.org/10.5601/jelem.....
 
49.
La Manna, L., Buduba, C., Alonso, V., Davel, M., Puentes, C., Irisarri, J., 2007. Comparación de métodos analíticos para la determinación de materia orgánica en suelos de la región andino patagónica: efectos de la vegetación y el tipo de suelo. CI. Suelo (Argentina) 25(2), 179–188.
 
50.
Lal, R., 2005. Forest soils and carbon sequestration. Forest Ecology and Management 220(1–3), 242–258. https://doi.org/10.1016/j.fore....
 
51.
Läuchli, A., Grattan, S.R., 2012. Soil pH Extremes. Plant Stress Physiology 8, 201–216. https://doi.org/10.1079/978184....
 
52.
Lin, H.S., Mclnnes, K., Wilding, L., Hallmark, C., 1999. Effects of Soil Morphology on Hydraulic Properties I. Quantification of Soil Morphology. Soil Science Society of America Journal 63(4), 948–954. https://doi.org/10.2136/sssaj1....
 
53.
Lozano, P., Bussmann, R., Küppers, M., 2007. Diversidad florística del bosque montano en el Occidente del Parque Nacional Podocarpus, Sur del Ecuador y su influencia en la flora pionera en deslizamientos naturales. Revista Científica UDO Agrícola 7(1), 142–159.
 
54.
Lozano, P., Bussmann, R., 2005. Importancia de los deslizamientos en el Parque Nacional Podocarpus, Loja, Ecuador. Revista Peruana de Biología 12(2), 195–202.
 
55.
Lozano, P. 2002. Los tipos de bosque en el sur del Ecuador. Botánica Austroecuatoriana 29–49.
 
56.
Marinari, S., Mancinelli, R., Campiglia, E., Grego, S., 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecological Indicators 6(4), 701–711. https://doi.org/10.1016/j.ecol....
 
57.
Modernel, P., Rossing, W., Corbeels, M., Dogliotti, S., Picasso, V., Tittonell, P., 2016. Land use change and ecosystem service provision in Pampas and Campos grasslands of southern South America. Environmental Research Letters 11(11). https://doi.org/10.1088/1748-9....
 
58.
Mohd-Azlan, J., Lok, L., Maiwald, M.J., Fazlin, S., Shen, T.D., Kaicheen, S.S., Dagang, P., 2020. The distribution of medium to large mammals in Samunsam wildlife sanctuary, Sarawak in relation to the newly constructed pan-borneo highway. Nature Conservation Research 5(4), 43–54. https://dx.doi.org/10.24189/nc....
 
59.
Nega, E., Heluf, G., 2013. Effect of land use changes and soil depth on soil organic matter, total nitrogen and available phosphorus contents of soils in Senbat watershed, western Ethiopia. American Journal of Agricultural and Biological Science 8(3), 206–212.
 
60.
Nezomba, H., Mtambanengwe, F., Tittonell, P., Mapfumo, P., 2017. Practical assessment of soil degradation on smallholder farmers’ fields in Zimbabwe: Integrating local knowledge and scientific diagnostic indicators. Catena 156, 216–227. https://doi.org/10.1016/j.cate....
 
61.
Ochoa-Cueva, P., Chamba, Y., Arteaga, J., Capa, E., 2017. Estimation of suitable areas for coffee growth using a GIS approach and multicriteria evaluation in regions with scarce data. Applied Engineering in Agriculture 33(6), 841–848. https://dx.doi.org/10.13031/AE....
 
62.
Ochoa-Jiménez, D. A., Cueva-Agila, A., Prieto, M., Aragón, G., Benitez, Á., 2015. Cambios en la composición de Líquenes epífitos relacionados con la Calidad del aire en la Ciudad de Loja (Ecuador). Changes in the epiphytic lichen composition related with air quality in the city of Loja (Ecuador). Caldasia 37(2), 333–343. http://dx.doi.org/10.15446/cal....
 
63.
Pauli, N., Abbott, L., Negrete-Yankelevich, S., Andrés, P., 2016. Farmers’ knowledge and use of soil fauna in agriculture: A worldwide review. 2016. Ecology and Society 21(3). http://dx.doi.org/10.5751/ES-0....
 
64.
Pauli, N., Barrios, E., Conacher, A., Oberthür, T., 2012. Farmer knowledge of the relationships among soil macrofauna, soil quality and tree species in a smallholder agroforestry system of western Honduras. Geoderma 189–190, 186–198. https://doi.org/10.1016/j.geod....
 
65.
Perazzoni, F., Bacelar–Nicolau, P., Painho, M, 2020. Geointelligence against Illegal Deforestation and Timber Laundering in the Brazilian Amazon. ISPRS International Journal of Geo-Information 9(6), 398. https://doi.org/10.3390/ijgi90....
 
66.
Quichimbo, P., Tenorio, G., Borja, P., Cárdenas, I., Crespo, P., Célleri, R., 2012. Efectos sobre las propiedades físicas y químicas de los suelos por el cambio de la cobertura vegetal y uso del suelo: páramo de Quimsacocha al sur del Ecuador. Suelos Ecuatoriales 42(2), 138–153.
 
67.
Raes, L., Speelman, S., Aguirre, N., 2017. Farmers’ preferences for PES contracts to adopt silvopastoral systems in southern Ecuador, revealed through a choice experiment. Environmental management 60(2), 200–215. https://doi.org/10.1007/s00267....
 
68.
Reyna-Bowen, L., Montenegro, L. Reyna, L., 2018. Soil–organic–carbon concentration and storage under different land uses in the Carrizal–Chone Valley in Ecuador. Applied Sciences 9(1), 45. https://doi.org/10.3390/app901....
 
69.
Rogé, P., Friedman, A.R., Astier, M., Altieri, M.A., 2014. Farmer Strategies for Dealing with Climatic Variability: A Case Study from the Mixteca Alta Region of Oaxaca, Mexico. Agroecology and Sustainable Food Systems 38, 786–811. https://doi.org/10.1080/216835....
 
70.
Sandoval, M., Fernández, J., Seguel, O., Becerra, J. y Salazar, D., 2011. Métodos de Análisis Físicos de Suelos. Sociedad Chilena de la Ciencia del suelo. Universidad de Concepción, Facultad Agronomía, Departamento de Suelo y Recursos Naturales, 1–75.
 
71.
Sharma, A., Tiwari, K., Bhadoria., 2010. Effect of land use land cover change on soil erosion potential in an agricultural watershed. Environment Monit Evaluation 173, 789–801. https://doi.org/10.1007/s10661....
 
72.
Silori, C.S., 2008. Biosphere reserve management in theory and practice: Case of Nanda Devi biosphere reserve, Western Himalaya, India. Journal of International Wildlife Law and Policy 4(3), 205–219. https://doi.org/10.1080/138802....
 
73.
Soil Survey Staff., 2014. Keys to Soil Taxonomy, twelfth edition. NRCS, USDA, USA.
 
74.
Stepien, W.; Kobialka, M., 2019. Effect of long-term organic and mineral fertilisation on selected physico-chemical soil properties in rye monoculture and five-year crop rotation. Soil Science Annual 70(1), 34–38. https://doi.org/10.2478/ssa-20....
 
75.
Solano, M., Ramón, P., Gusmán, E., Burneo, J., Quichimbo, P., Jiménez, L., 2018. Efecto del gradiente altitudinal sobre las reservas de carbono y nitrógeno del suelo en un matorral seco en Ecuador. Revista Ecosistemas 27(3), 116–122. https://doi.org/10.7818/ECOS.1....
 
76.
Tapia–Armijos, M. F., Homeier, J., Espinosa, C., Leuschner, C., Cruz, M., 2015. Deforestation and forest fragmentation in south Ecuador since the 1970s - Losing a hotspot of biodiversity. Plos One 10(11). https://doi.org/10.1371/journa....
 
77.
Tellen, V.A., Yerima, B.P.K., 2018. Effects of land use change on soil physicochemical properties in selected areas in the North West region of Cameroon. Environmental Systems Research 7(1), 3. https://doi.org/10.1186/s40068....
 
78.
Thomson, B., Tisserant, E., Plassart, P., Uroz, S., Griffiths, R., Hannula, E., Buée, M., Mougel, C., Ranjard, L., Van Veen, J., Martin, F., Bailey, M., Ph, Lemanceau., 2015. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biology and Biochemistry 88, 403–413. https://doi.org/10.1016/j.soil....
 
79.
Tobita, H., Yazaki, K., Harayama, H. y Kitao, M., 2015. Responses of symbiotic N2 fixation in Alnus species to the projected elevated CO2 environment. Trees 30, 523–537. https://doi.org/10.1007/s00468....
 
80.
Trucíos, R., Estrada–Ávalos, J., Cerano–Paredes, J., Rivera–González, M., 2011. Interpretación del cambio en vegetación y uso de suelo. Terra Latinoamericana 29(4), 359–367.
 
81.
Verburg, P., Ellis, E., Letourneau, A., 2011. A global assessment of market accessibility and market influence for global environmental change studies. Environmental Research Letters 6 (3). https://doi.org/10.1088/1748-9....
 
82.
Urgilés, V., Sánchez-Nivicela, J., Nieves, C. y Yánez-Muñoz, M., 2014. Terrestrial frogs in southern Andean ecosystems of Ecuador I: Two new species of Pristimantis (Anura: Craugastoridae) of the eastern versant. Avances 6(1), B51–B59.
 
83.
Vitousek, P.M., Aber, J., Howarth, R., Likens, G., Matson, P., Schindler, D., Schlesinger, W., Tilman, D., 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7(3), 737–750. https://doi.org/10.1890/1051-0....
 
84.
Wang, J., Liu, X., Li, Y., Powell, T., Wang, X., Wang, G. y Zhang, P., 2019. Microplastics as contaminants in the soil environment: A mini-review. Science of the Total Environment 691, 848–857. https://doi.org/10.1016/j.scit....
 
85.
Xiangbin, K., Zhang, F., Wei, Q., Xu, Y. y Hui, J., 2006. Influence of land use change on soil nutrients in an intensive agricultural region of North China. Soil and Tillage Research 88(1–2), 85–94. https://doi.org/10.1016/j.stil....
 
86.
Yang, J., Han, X., Huang, J., Pan, Q., 2003. Effects of land use change on carbon storage in terrestrial ecosystem. Journal of Applied Ecology 14(8), 1385–1390.
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top