PL EN
ORIGINAL PAPER
Soil physicochemical properties and aggregate stability in tropical soils
 
More details
Hide details
1
Facultad de Minas/Geosciences and Environment, Universidad Nacional de Colombia/ Sede Medellin, Colombia
 
2
Institute of Soil Science and Site Ecology, TUD Dresden University of Technology, Germany
 
3
Facultad de Ciencias Agrarias, Departamento de Ciencias Agronómicas, Universidad Nacional de Colombia - Sede Medellin, Colombia
 
4
Facultad de Ciencias Agrarias, Departamento de Agronomía, Universidad Nacional de Colombia, Sede Bogota, Colombia
 
5
Institute of Agrophysics, Polish Academy of Sciences, Polska
 
6
Department of Soil Science and Agrophisics, University of Agriculture in Krakow, Polska
 
 
Submission date: 2024-06-22
 
 
Final revision date: 2024-11-25
 
 
Acceptance date: 2025-04-04
 
 
Online publication date: 2025-04-04
 
 
Publication date: 2025-04-04
 
 
Corresponding author
Juan Carlos Loaiza-Usuga   

Facultad de Minas/Geosciences and Environment, Universidad Nacional de Colombia/ Sede Medellin, Av. 80 #65 - 223. Campus Robledo. Bloque M2. Ofici, 050041, Medellin, Colombia
 
 
Soil Sci. Ann., 2025, 76(1)203719
 
KEYWORDS
ABSTRACT
Several authors have suggested a relationship between soil physicochemical properties and the mineral composition of tropical soils concerning the development of soil structure and aggregate stability. This study analyzed soil samples from different climatical conditions, from Bt, Bss, Bo, and Bw (endopedons) soil diagnostic horizons, typical of tropical soils in Andean, Caribbean, and Orinoco regions in Colombia. The stability of soil macroaggregates was determined by the wet sieving method, and the stability of microaggregates was determined by the laser diffraction method. The results showed the predominance of silt and clay fractions and high variability of grain size distribution, which translates into low soil structure stability and high susceptibility to their dispersion (making them susceptible to degradation by erosion), except in Andisols. Wet sieving (KR) results and laser diffraction-based aggregate stability index (ASILD) showed good levels of microaggregate stability only in Andisols. The soil organic carbon (SOC) content was medium to low in dry climates and high in cold, humid conditions. Andisols were characterized by the high SOC content and Water Resistance Index (WRI). This study provided knowledge of the differences in the physicochemical properties of tropical soils as a tool for assessing the aggregation of soils under different management practices and environmental change scenarios.
REFERENCES (43)
1.
Agegnehu, G., Amede, T., 2017. Integrated Soil Fertility and Plant Nutrient Management in Tropical Agro-Ecosystems: A Review. Pedosphere 27(4), 662–680. https://doi.org/10.1016/S1002-....
 
2.
Alekseeva, T.V., Sokolowskab, Z., Hajnosb, M., Alekseeva, A.O., Kalinina, P.I., 2009. Water Stability of Aggregates in Subtropical and Tropical Soils (Georgia and China) and Its Relationships with the Mineralogy and Chemical Properties. Eurasian Soil Science 42(4), 415–425. https://doi.org/10.1134/S10642....
 
3.
Amezketa, E., Ramón, A., Urgel, B., 2003. Macro-and micro-aggregate stability of soils determined by a combination of wet-sieving and laser-ray diffraction. Spanish Journal of Agricultural Research 1(4), 83–94. https://doi.org/10.5424/sjar/2....
 
4.
Arias, D., Madero, E., Amézquita, E., 2001. Susceptibilidad al encostramiento en algunos suelos álicos colombianos. Suelos Ecuatoriales 31(2), 220–225 (In Spanish).
 
5.
Bieganowski, A., Zaleski, T., Kajdas, B., Sochan, A., Józefowska, A., Beczek, M., Lipiec, J., Turski, M., Ryżak, M., 2018. An improved method for determination of aggregate stability using laser diffraction. Land Degradation and Development 29(5), 1376–1384. https://doi.org/10.1002/ldr.29....
 
6.
Bieganowski, A., Krusińska, A., Ryżak, M., 2011. Elimination of measurement error in light microscopy investigations of starch granules geometry. International Agrophysysics 25, 193–196.
 
7.
Boruvka, L., Valla, M., Donátová, H., Nemecek, K., 2002. Vulneravility of soil aggregates in relation to soil properties. Rostlinná Vyroba 48(8), 329–334. https://doi.org/10.17221/4376-....
 
8.
Bronick, C.J., Lal, R., 2005. Soil structure and management: a review. Geoderma 124, 3–22. https://doi.org/10.1016/j.geod....
 
9.
Calero, J., García-Ruiz, R., Torrús-Castillo, M., Vicente-Vicente, J.L., Martín-García, J.M., 2023. Role of Clay Mineralogy in the Stabilization of Soil Organic Carbon in Olive Groves under Contrasted Soil Management. Minerals 13, 60. https://doi.org/10.3390/min130....
 
10.
Carrizo, M., Alesso A., Cosentino, D., Imhoff, S., 2015. Aggregation agents and structural stability in soils with different texture and organic carbon contents. Scientia Agricola 72, 75–82. https://doi.org/10.1590/0103-9....
 
11.
Chang, A.L., Liang, M.Y., Nie, Y., Tang, J.W., Siddique, K.H.M., 2019. The conversion of tropical forests to rubber plantations accelerates soil acidification and changes the distribution of soil metal ions in topsoil layers. Science of the Total Environment 696, 134082. https://doi.org/10.1016/j.scit....
 
12.
Denef, K., Six, J., Merck, R., Paustian, K., 2002. Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant and Soil 246, 185–200. https://doi.org/10.1023/A:1020....
 
13.
Holdridge L. R., 1967. Life Zone Ecology. San José, CR, Tropical Science Center. 206 p.
 
14.
IGAC., 2013. Estudio de suelos del territorio colombiano. Instituto Geográfico Agustín Codazzi (IGAC). Sistema de Información Geográfica Agrologica (SIGA). Bogotá. (In Spanish).
 
15.
IUSS Working Group WRB., 2022. World Reference Base for Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
 
16.
Jiang, J., Xu, R.K., Zhao, A.Z., 2011. Surface chemical properties and pedogenesis of tropical soils derived from basalts with different ages in Hainan, China. Catena 87, 334–340. https://doi.org/10.1016/j.cate....
 
17.
Kemper, W.D., Rosenau, R.C., 1986. Aggregate Stability and Size Distribution. In: Klute, A., Ed. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, 2nd Edition, Soil Science Society of America Agronomy Monograph No. 9, 425–442.
 
18.
Loaiza-Usuga, J.C., León-Peláez, J.D., González-Hernández, M.I., Gallardo-Lancho, J.F., Osorio-Vega, W., Correa-Londoño, G., 2013. Alteration in Litter decomposition pattern in tropical montane forest of Colombia: Oak forests contrasted with coniferous plantations. Canadian Journal of Forest Research 43(6), 528–533. https://doi.org/10.1139/cjfr-2....
 
19.
Machado, J., Villegas-Palacio, C., Loaiza-Usuga, J.C., Castañeda, D., 2019. Soil natural capital vulnerability to environmental Change. A regional scale approach for tropical soils in the Colombian Andes. Ecological Indicators 96(1), 116–126. https://doi.org/10.1016/j.ecol....
 
20.
Mamedov, A.I., Wagner, L.E., Huang, C., Norton, L.D., Levy, G.J., 2010. Polyacrylamide Effects on Aggregate and Structure Stability of Soils with Different Clay Mineralogy. Soil Science Society of Americ Journal 74, 1720–1732. https://doi.org/10.2136/sssaj2....
 
21.
Martinez, J.A., Loaiza-Usuga, J.C., Osorio N.W., Correa, G., Casamitjana-Causa, M., 2020. Leaflitter decomposition on diverse silvopastoral systems in a neotropical environment. Journal of Sustainable Forestry 39(7), 710–729. https://doi.org/10.1080/105498....
 
22.
Novak, E., Carvalho, L.A., Santiago, E.F., Tomazi, M., 2019. Changes in the soil structure and organic matter dynamics under different plant covers. CERNE 25(2), 230–239. https://doi.org/10.1590/010477....
 
23.
Ontl, T., Cambardella, C., Schulte, L., Kolka, R., 2015. Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient. Geoderma 255-256, 1-11. https://doi.org/10.1016/j.geod....
 
24.
Poesen, J., 1986. Surface sealing on loose sediments: the role of texture, slope and position of stones in the top layer. In: Callebaut, F.D., Gabriels., Ed. Assessment of Soil Surface Sealing and Crusting. Proc. of Symposium, Gent, Belgium. 354–362.
 
25.
Pojasok, T., Kay, B.D., 1990. Assessment of a combination of wet sieving and turbidimetry to characterize the structural stability of moist aggregates. Canadian Journal of Soil Science 70, 33–42. https://doi.org/10.4141/cjss90....
 
26.
Powers, J.S., Schlesinger, W.H., 2002. Relationships among soil carbon distributions and biophysical factors at nested spatial scales in rain forests of northeastern Costa Rica. Geoderma 109, 165–190. https://doi.org/10.1016/S0016-....
 
27.
Pulido, M., Lobo, D., Lozano, Z., 2009. Association between soil structure stability indicators and organic matter in Venezuelan agricultural soils. AGROCIENCIA 43(3), 221–230.
 
28.
Rieke, E.L., Bagnall, D., Morgan, C.l.S., et al., 2022. Evaluation of aggregate stability methods for soil health. Geoderma 428, 116156. https://doi.org/10.1016/j.geod....
 
29.
Shoji, S., Nanzyo, M., Dahlgren, R.A., 1993. Volcanic ash soils: genesis, properties and utilization. Developments in Soil Science 21. Elsevier Science Publishers B.V.
 
30.
Sîmansky, V., Tobiasova, E., Chlpık, J., 2008. Soil tillage and fertilization of Orthic Luvisol and their influence on chemical properties, soil structure stability and carbon distribution in water-stable macro-aggregates. Soil and Tillage Research 100, 125–132. https://doi.org/10.1016/j.stil....
 
31.
Sochan, A., Zieliński, P., Bieganowski, A., 2015. Selection of shape parameters that differentiate sand grains, based on the automatic analysis of two‐dimensional images. Sedimentary Geology 327, 14–20. https://doi.org/10.1016/j.sedg....
 
32.
Soil Survey Staff., 2022a. Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service.
 
33.
Soil Survey Staff., 2022b. Kellogg Soil Survey Laboratory methods manual. Soil Survey Investigations Report No. 42, Version 6.0. U.S. Department of Agriculture, Natural Resources Conservation Service.
 
34.
Środoń, J., 2013. Chapter 2.2 - Identification and Quantitative Analysis of Clay Minerals, [In:] Bergaya, F., Lagaly, G. (Editors) Developments in Clay Science, Elsevier, Vol 5, 25–49. https://doi.org/10.1016/B978-0....
 
35.
Sun, R., Lan, G., Yang, C., Wu, Z., Chen, B., Fraedrich, K., 2023. Soil quality variation and its driving factors within tropical forests on Hainan Island, China. Land Degradation and Development 34(11), 3418–3432. https://doi.org/10.1002/ldr.46....
 
36.
Stătescu, F., Zaucă, D., Pavel, L., 2013. Soil structure and water-stable aggregates. Environmental Engineering and Management Journal 12(4), 741–746. https://doi.org/10.30638/eemj.....
 
37.
Taubner, H., Roth, B., Tippkötter, R., 2009. Determination of soil texture: Comparison of the sedimentation method and the laser‐diffraction analysis. Journal of Plant Nutrition and Soil Sciences 172(2), 161–171. https://doi.org/10.1002/jpln.2....
 
38.
Vial, M., Sandoval, M., 2015. Soil structural condition and its relationship with pastures under different conditions in the Simpson Valley (Humid western Patagonia, Chile). IDESIA 33(4), 31–40. https://doi.org/10.4067/S0718-....
 
39.
Wuddivira, M., Stone, R., Ekwue, E., 2009. Structural Stability of Humid Tropical Soils as Influenced by Manure Incorporation and Incubation Duration. Soil Science Society of America Journal 73(4), 1353–1360. https://doi.org/10.2136/sssaj2....
 
40.
Xu, L., Xing, X., Bai, J., Li, D., 2022. Soil aggregate structure, stability, and stoichiometric characteristics in a smelter-impacted soil under phytoremediation. Front. Environ. Sci 29(10), Sec. Toxicology, Pollution and the Environment. https://doi.org/10.3389/fenvs.....
 
41.
Ye, L, Tan, W; Fang, L, Ji, L., 2019. Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China: II. Spatial prediction. Soil and Tillage Research 192, 1–11. https://doi.org/10.1016/j.stil....
 
42.
Yoder, R.E., 1936. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses. Journal of the American Society of Agronomy 28, 337–351. https://doi.org/10.2134/agronj....
 
43.
Zhou, M., Liu, C., Wang, J., Meng, Q., Yuan, Y., Ma, X., Liu, X., Zhu, Y., Ding, G., Zhang, J., Zeng, X., Du, W., 2020. Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci Rep 10, 265. https://doi.org/10.1038/s41598....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top