PL EN
PRACA PRZEGLĄDOWA
Geneza, przekształcenia i klasyfikacja gleb organicznych w Polsce
 
Więcej
Ukryj
1
Department of Soil Science and Microbiology,, University of Warmia and Mazury in Olsztyn,, Polska
 
2
Institute of Soil Science, Plant Nutrition and Environmental Protection,, Wrocław University of Environmental and Life Sciences,, Polska
 
3
Department of Soil Science and Microbiology,, Poznań University of Life Sciences,, Polska
 
4
Department of Soil Science and Microbiology,, 1University of Warmia and Mazury in Olsztyn,, Polska
 
 
Data nadesłania: 08-08-2024
 
 
Data ostatniej rewizji: 08-10-2024
 
 
Data akceptacji: 25-10-2024
 
 
Data publikacji online: 25-10-2024
 
 
Data publikacji: 22-11-2024
 
 
Autor do korespondencji
Andrzej Łachacz   

Department of Soil Science and Microbiology,, University of Warmia and Mazury in Olsztyn,, Plac Łódzki 3,, 10–727, Olsztyn, Polska
 
 
Soil Sci. Ann., 2024, 75(4)195241
 
SŁOWA KLUCZOWE
STRESZCZENIE
Polskie Towarzystwo Gleboznawcze wybrało gleby organiczne jako gleby roku 2024. Są to gleby zbudowane z materiałów zawierających ≥12% węgla organicznego, do których zaliczamy torfy, gytie i muły, a także gleby zbudowane z utworów ściółkowych (liście, szczątki drzewne i części roślin trawiastych), które zawierają ≥20% węgla organicznego. Specyficzne właściwości tych gleb, przede wszystkim wysoka zawartość węgla organicznego, niska gęstość objętościowa i wysoka porowatość, zdecydowanie odróżnia je od gleb mineralnych. W 6 wydaniu Systematyki gleb Polski wyróżniono cztery główne typy gleb organicznych, tj. gleby torfowe, gleby limnowe, gleby murszowe i gleby ściółkowe. Szacunkowa powierzchnia gleb organicznych w Polsce waha się od 4 do 5%. Gleby te zlokalizowane są głównie w bezodpływowych zagłębieniach terenu i dolinach rzecznych. Wyjątek stanowią gleby ściółkowe występujące głównie na terenach górskich. Wśród gleb organicznych zdecydowanie największą powierzchnię zajmują gleby torfowe i murszowe, użytkowane rolniczo. Gleby organiczne są uważane za największy naturalny lądowy rezerwuar węgla organicznego, jednak obserwowane zmiany klimatu, w połączeniu z intensywną działalnością człowieka wpływają negatywnie na ich potencjał do długotrwałego magazynowania węgla organicznego. W niniejszym artykule przeglądowym przedstawiono: (a) koncepcję gleb organicznych w Polsce; (b) aktualny schemat klasyfikacji gleb organicznych w Polsce oraz ich korelacji z międzynarodowymi systemami (WRB i Soil Taxonomy) (c) przegląd rozmieszczenia, użytkowania, zagrożeń i ochrony gleb organicznych w Polsce; oraz d) potencjalne przyszłe kierunki badań dotyczące gleb organicznych.
REFERENCJE (213)
1.
Bebkiewicz, K., Boryń, E., Chłopek, Z., Doberska, A., Jędrysiak, P., Kargulewicz, I., Olecka, A., Rutkowski, J., Sędziwa, M., Skośkiewicz, J., Szczepański, K., Walęzak, M., Waśniewska, S., Zimakowska-Laskowska, M., Żaczek, M., 2022. Poland’s national inventory report 2022 greenhouse gas inventory for 1988–2020, Ministry of Climate and Environment, Warsaw, Poland.
 
2.
Becher, M., 2013. Organic matter transformation degree in the soils of the upper Liwiec river. Rozprawa Naukowa Uniwersytetu Przyrodniczo-Humanistycznego w Siedlcach, No. 125, 158 pp. (in Polish with English summary).
 
3.
Becher, M., Pakula, K., Jaremko, D., 2020. Phosphorus accumulation in the dehydrated peat soils of the Liwiec River Valley. Journal of Ecological Engineering 21(5), 213–220. https://doi.org/10.12911/22998....
 
4.
Becher, M., Pakuła, K., Pielech, J., Trzcińska, E., 2018. Phosphorus resources and fractions in peat-muck soils. Environmental Protection and Natural Resources 29, 3(77), 1–6. https://doi.org/10.2478/oszn-2....
 
5.
Becher, M., Tołoczko, W., Godlewska, A., Pakuła, K., Żukowski, E., 2022. Fractional composition of organic matter and properties of humic acids in the soils of drained bogs of the Siedlce Heights in eastern Poland. Journal of Ecological Engineering 23, 208–222. https://doi.org/10.12911/22998....
 
6.
Becher, M., Kalembasa, D., Kalembasa, S., Symanowicz, B., Jaremko, D., Matyszczak, A., 2023. A new method for sequential fractionation of nitrogen in drained organic (peat) soils. International Journal of Environmental Research and Public Health 20, 2367. https://doi.org/10.3390/ijerph....
 
7.
Bieniek, B., 1988. Changes of the chemical composition of peat soils occurring at a deep drainage under conditions of the Masurian Lake District. Roczniki Nauk Rolniczych, Ser. F, 80(2–4), 203–225. (in Polish with English summary).
 
8.
Bochter, R., Zech, W., 1985. Organic compounds in cryofolists developed on limestone under subalpine coniferous forest, Bavaria. Geoderma 36, 2, 145–157. https://doi.org/10.1016/0016-7....
 
9.
Bogacz, A., 2005. Właściwości i stan przeobrażenia wybranych gleb organicznych Sudetów. [The properties and the stage of evolution of selected organic soils in the Sudety Mountains]. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu, Nr 507, Rozprawy 226, 147 pp. (in Polish with English summary).
 
10.
Bojko, O., Kabała, C., Mendyk, Ł., Markiewicz, M., Pagacz-Kostrzewa, M., Glina, B., 2017. Labile and stabile soil organic carbon fractions in surface horizons of mountain soils – relationships with vegetation and altitude. Journal of Mountain Science 14, 2391–2405. https://doi.org/10.1007/s11629....
 
11.
Borowiec, J., 1990. Torfowiska Regionu Lubelskiego. [Peatlands of the Lublin Region]. PWN, Warszawa, 348 pp. + 4 maps. (in Polish).
 
12.
Borówka, R.K., Sławińska, J., Okupny, D., Osóch, P., Tomkowiak, J., 2022. Mercury in the sediments of selected peatlands in Małopolska region. Acta Geographica Lodziensia 112, 61–76. https://doi.org/10.26485/AGL/2....
 
13.
Cao, L., Song, J., Wang, Q., Li, X., Yuan, H., Li, N., Duan, L., 2017. Characterization of labile organic carbon in different coastal wetland soils of Laizhou Bay, Bohai Sea. Wetlands 37, 163–175. https://doi.org/10.1007/s13157....
 
14.
Dębicka, M., Bogacz, A., Kowalczyk, K., 2021. Phosphorus behaviour and its basic indices under organic matter transformation in variable moisture conditions: A case study of fen organic soils in the Odra River Valley, Poland. Agronomy 11, 1997. https://doi.org/10.3390/agrono....
 
15.
Dembek, W., Piórkowski, H., Rycharski, M., 2000. Mokradła na tle regionalizacji fizycznogeograficznej Polski. [Wetlands in the context of the physical and geographical regionalisation of Poland]. Biblioteczka Wiadomości IMUZ 97, 1–135. (in Polish).
 
16.
Długosz, J., Kalisz, B., Łachacz, A., 2018. Mineral matter composition of drained floodplain soils in north-eastern Poland. Soil Science Annual 69(3), 184–193. https://doi.org/10.2478/ssa-20....
 
17.
Dobrowolski, R., Mazurek, M.B., Osadowski, Z., Alexandrowicz, W.P., Pidek, I.A., Pazdur, A., Piotrowska, N., Drzymulska, D., Urban, D., 2019. Holocene environmental changes in northern Poland recorded in alkaline spring-fed fen deposits – A multi-proxy approach. Quaternary Science Reviews 219, 236–262. http://dx.doi.org/10.1016/j.qu....
 
18.
Drewnik, M., Walas, J., Stolarczyk, M., 2015. Ogólna charakterystyka i właściwości gleb torfowiska stokowego na północnym skłonie Szerokiego Wierchu (Bieszczady Zachodnie). Roczniki Bieszczadzkie 23, 319–333. (in Polish with English summary).
 
19.
Drewnik, M., Rajwaj-Kuligiewicz, A., Stolarczyk, M., Kucharczyk, S., Zelazny, M., 2018. Intra-annual groundwater levels and water temperature patterns in raised bogs affected by human impact in mountain areas in Poland. Science of the Total Environment 624, 991–1003. https://doi.org/10.1016/j.scit....
 
20.
Drozd, J., Kowaliński, S., Licznar, M., Licznar, S., 1987. Micromorphological interpretation of the physico-chemical processes in post-bog soils. Roczniki Gleboznawcze – Soil Science Annual 38(3), 121–137. (in Polish with English summary).
 
21.
Everett, K.R., 1983. Histosols. [In:] Wilding, L.P., Smeck, N.E., Hall, G.F. (Eds), Pedogenesis and Soil Taxonomy II. The Soil Orders. Elsevier Scientific Publishers, Amsterdam, The Netherlands, 1–53.
 
22.
Fenner, N., Freeman, C., 2011. Drought-induced carbon loss in peatlands. Nature Geoscience 4, 895–900.
 
23.
Fenner, N., Williams, R., Toberman, H., Hughes, S., Reynolds, B., Freeman, C., 2011. Decomposition ‘hotspots’ in a rewetted peatland: implications for water quality and carbon cycling. Hydrobiologia 674, 51–66.
 
24.
Forsmann, D.M., Kjaergaard, C., 2014. Phosphorus release from anaerobic peat soils during convective discharge. Effect of soil Fe:P molar ratio and preferential flow. Geoderma 223, 21–32.
 
25.
Frolking, S., Talbot, J., Jones, M.C., Treat, C.C., Kauffman, J.B., Tuittila, E.S., Roulet, N., 2011. Peatlands in the Earth’s 21st century climate system. Environmental Reviews 19, 371–396.
 
26.
Gałka, B., Kabała, C., Łabaz, B., Bogacz, A., 2014. Influence of stands with diverse share of Norway spruce in species structure on soil in various forest habitats in the Stołowe Mountains. Sylwan 158, 9, 684–694.
 
27.
Gawlik, J., 1992. Water holding capacity of peat formations as an index of the state of their secondary transformation. Polish Journal of Soil Science 25(2), 121–126.
 
28.
Ghani, A., Sarathchandra, U., Ledgard, S., Dexter, M., Lindsey, S., 2013. Microbial decomposition of leached or extracted dissolved organic carbon and nitrogen from pasture soils. Biology and Fertility of Soils 49, 747–755.
 
29.
Glina, B., Bogacz, A., Wozniczka, P., 2016a. Nitrogen mineralization in forestry-drained peatland soils in the Stolowe Mountains National Park (Central Sudetes Mts). Soil Science Annual 67, 64–72. https://doi.org/10.1515/ssa-20....
 
30.
Glina, B., Bogacz, A., Gulyás, M., Zawieja, B., Gajewski, P., Kaczmarek, Z., 2016b. The effect of long-term forestry drainage on the current state of peatland soils: A case study from the Central Sudetes, SW Poland. Mires and Peat 18, 1–11. https://doi.org/10.19189/MaP.2....
 
31.
Glina, B., Gajewski, P., Kaczmarek, Z., Owczarzak, W., Rybczynski, P., 2016c. Current state of peatland soils as an effect of long-term drainage – preliminary results of peatland ecosystems investigation in the Grojecka Valley (central Poland). Soil Science Annual 67, 3–9. https://doi.org/10.1515/ssa-20....
 
32.
Glina, B., Piernik, A., Hulisz, P., Mendyk, Ł., Tomaszewska, K., Podlaska, M., Bogacz, A., Spychalski, W., 2019. Water or soil – What is the dominant driver controlling the vegetation pattern of degraded shallow mountain peatlands? Land Degradation & Development 30, 1437–1448. https://doi.org/10.1002/Idr.33....
 
33.
Glina, B., Piernik, A., Mocek-Płóciniak, A., Maier, A., Glatzel, S., 2021. Drivers controlling spatial and temporal variation of microbial properties and dissolved organic forms (DOC and DON) in fen soils with persistently low water tables. Global Ecology and Conservation 27, e01605. https://doi.org/10.1016/j.gecc....
 
34.
Glina, B., Mendyk, L., Piernik, A., Nowak, M., Maier, A., Inselsbacher, E., Glatzel, S., 2022. Local weather conditions determine DOC production and losses from agricultural fen soils affected by open-pit lignite mining. Catena 211, http://dx.doi.org/10.1016/j.ca....
 
35.
Gnatowski, T., Szatyłowicz, J., Brandyk, T., Kechavarzi, C., 2010. Hydrauclic properties of fen peat soils in Poland. Geoderma 154, 188–195. https://doi.org/10.1016/j.geod....
 
36.
Gnatowski, T., Ostrowska-Ligęza, E., Kechavarzi, C., Kurzawski, G., Szatyłowicz, J., 2022. Heat capacity of drained peat soils. Applied Sciences 12, 1579. https://doi.org/10.3390/app120....
 
37.
Grosse-Brauckmann, G., Schäfer, W., Wittmann, O., 1995. Nochmals: Zur systematik und kartierung von moorböden. [Once more: On classification and mapping of peat soils]. Telma 25, 35–55.
 
38.
Grzybowski, M., Glińska-Lewczuk, K., 2020. The principal threats to the peatlands habitats, in the continental bioregion of Central Europe – A case study of peatland conservation in Poland. Journal for Nature Conservation 53, 125778. https://doi.org/10.1016/j.jnc.....
 
39.
Harris, L.I., Richardson, K., Bona, K.A., Davidson, S.J., Finkelstein, S.A., Garneau, M., Ray, J.C., 2022. The essential carbon service provided by northern peatlands. Frontiers in Ecology and the Environment 20, 222–230. https://doi.org/10.1139/facets....
 
40.
Hedberg, P., Kozub, L., Kotowski, W., 2014. Functional diversity analysis helps to identify filters affecting community assembly after fen restoration by top-soil removal and hay transfer. Journal for Nature Conservation 22, 1, 50–58. https://doi.org/10.1016/j.jnc.....
 
41.
Heller, C., Zeitz, J., 2012. Stability of soil organic matter in two northeastern German fen soils: the influence of site and soil development. Journal of Soils and Sediments 12, 1231–1240.
 
42.
Hewelke, E., Szatyłowicz, J., Gnatowski, T., Oleszczuk, R., 2016. Effects of soil water repellency on moisture patterns in a degraded sapric Histosol. Land Degradation & Development 27, 955–964. https://doi.org/10.1002/ldr.23....
 
43.
Holden, J., Chapman, P. J., Labadz, J. C., 2004. Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progress in Physical Geography 28, 95–123.
 
44.
Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., ... & Yu, Z., 2020. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences of the United States of America 117, 20438–20446.
 
45.
Ilnicki, P., 2002. Torfowiska i torf [Peatlands and Peat]. Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego, Poznań, 606 pp. (in Polish).
 
46.
Ilnicki, P., Zeitz, J., 2003. Irreversible loss of organic soil functions after reclamation. [In:] Parent, L-E., Ilnicki, P. (Eds), Organic soils and peat materials for sustainable agriculture. CRC Press, Boca Raton, USA, 15–32.
 
47.
Ilnicki, P., Żurek, S., 1996. Peat resources in Poland. [In:] Lappalainen, E. (Ed.), Global peat resources. International Peat Society, Jyskä, Finland, 119–125.
 
48.
IUSS Working Group WRB, 2006. World Reference Base for soil resources: a framework for international classification, correlation and communication. World Soil Resources Reports 103. FAO, ISRIC, IUSS, Rome.
 
49.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports 106. FAO, Rome.
 
50.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th edition, International Union of Soil Sciences (IUSS), Vienna, Austria, 236 pp.
 
51.
Jabłońska, E., Kotowski, W., Giergiczny, M., 2021. Projekt strategii ochrony mokradeł w Polsce na lata 2022–2032. Centrum Ochrony Mokradeł na zlecenie Generalnej Dyrekcji Ochrony Środowiska. (in Polish).
 
52.
Jarnuszewski, G., Meller, E., Kitczak T., 2023. Evolution of shallow post-bog soils developed on Holocene carbonate sediments in NW Poland. Journal of Water and Land Development 58(7–9), 99–109. https://doi.org/10.24425/JWLD.... 2023.
 
53.
Joosten, H., Clarke, D., 2002. Wise use of mires and peatlands – background and principles including a framework for decision-making. International Mire Conservation Group/International Peat Society, Saarijärvi, Finland, 303 pp.
 
54.
Joosten, H., Tapio-Biström, M.-L., Tol, S. (Eds), 2012. Peatlands – guidance for climate change mitigation through conservation, rehabilitation and sustainable use. Mitigation of climate change in agriculture, Series 5, publishes by the Food and Agriculture Organization of the United Nations and Wetland International, Rome.
 
55.
Jurczuk, S., 2011. Reclamation determinants of organic matter preservation in post-bog soils under meadows. Woda-Środowisko-Obszary Wiejskie, Rozprawy Naukowe i Monografie, No. 30, 81 pp. (in Polish with English summary).
 
56.
Kabała, C., 2022. Origin, transformation and classification of alluvial soils (mady) in Poland – soils of the year 2022. Soil Science Annual 73, 3, 156043. https://doi.org/10.37501/soils....
 
57.
Kabała, C., Bogacz, A., Łabaz, B., Szopka, K., Waroszewski, J., 2013. Różnorodność, dynamika i zagrożenia gleb. [In:] Knapik, R., Raj, A. (Eds), Przyroda Karkonoskiego Parku Narodowego, 91–126. (in Polish).
 
58.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., ... & Waroszewski, J., 2019. Polish soil classification: Principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97. https://doi.org/10.2478/ssa-20....
 
59.
Kacprzak, A., Drewnik, M., Uzarowicz Ł., 2006. Rozwój i kierunki przemian węglanowych gleb rumoszowych na terenie Pienińskiego Parku Narodowego. Pieniny–Przyroda i Człowiek 9, 41–50. (in Polish).
 
60.
Kalisz, B., Łachacz, A., 2008. Morfologia i systematyka gleb mułowych w dolinie Omulwi i Rozogi na Równinie Kurpiowskiej. [Morphology and classification of mud soils in Omulew and Rozoga rivers valleys in Kurpie Plain]. Roczniki Gleboznawcze – Soil Science Annual 59(3/4), 89–96. (in Polish with English summary).
 
61.
Kalisz, B., Łachacz, A., 2009. Content of nutrients, heavy metals and exchangeable cations in riverine organic soils. Polish Journal of Soil Science 42(1), 43–52.
 
62.
Kalisz, B., Łachacz, A., 2023. Relations between labile and stable pool of soil organic carbon in drained and rewetted peatlands. Journal of Elementology 28(2), 263–278. http://dx.doi.org/10.5601/jele....
 
63.
Kalisz, B., Łachacz, A., Głażewski, R., 2010. Transformation of some organic matter components in organic soils exposed to drainage. Turkish Journal of Agriculture and Forestry 34(3), 245–256. https://doi.org/10.3906/tar-09....
 
64.
Kalisz, B., Łachacz, A., Głażewski, R., 2015. Effects of peat drainage on labile organic carbon and water repellency in NE Poland. Turkish Journal of Agriculture and Forestry 39(1), 20–27. https://doi.org/10.3906/tar-14....
 
65.
Kalisz, B., Urbanowicz, P., Smólczyński, S., Orzechowski, M., 2021. Impact of siltation on the stability of organic matter in drained peatlands. Ecological Indicators 130, 108149. https://doi.org/10.1016/j.ecol....
 
66.
Karpińska-Kołaczek, M., Kołaczek, P., Marcisz, K., Gałka, M., Kajukało-Drygalska, K., Mauquoy, D., Lamentowicz, M., 2024. Kettle-hole peatlands as carbon hot spots: Unveiling controls of carbon accumulation rates during the last two millennia. Catena 237, 107764. https://doi.org/10.1016/j.cate....
 
67.
Kasimir, A., He, H.X., Coria, J., Norden, A., 2018. Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics. Global Change Biology 24, 3302–3316.
 
68.
Kimmel, K., Mander, Ü., 2010. Ecosystem services of peatlands: Implications for restoration. Progress in Physical Geography – Earth and Environment 34, 491–514.
 
69.
Kinsman-Costello, L. E., Hamilton, S. K., O’Brien, J. M., Lennon, J. T., 2016. Phosphorus release from the drying and reflooding of diverse shallow sediments. Biogeochemistry 130, 159–176. https://doi.org/10.1007/s10533....
 
70.
Kotowski, W., Dembek, W., Pawlikowski, P., 2017. Poland. [In:] Joosten, H., Tanneberger, F., Moen, A. (Eds), Mires and peatlands of Europe. Status, distribution and conservation. Schweizerbart Science Publishers, Stuttgart, Germany, 549–571.
 
71.
Kowaliński, S., 1964. Gleby murszowe i ich przeobrażenia pod wpływem uprawy płużnej. [Moorsh soils and their metamorphoses effected by plough tillage]. Prace Wrocławskiego Towarzystwa Naukowego, Ser. B 124, 139 pp. (in Polish with English summary).
 
72.
Kruczkowska, B., Błaszkiewicz, M., Jonczak, J., Uzarowicz, Ł., Moska, P., Brauer, A., Bonk, A., Słowiński, M., 2020. The Late Glacial pedogenesis interrupted by aeolian activity in Central Poland – Records from the Lake Gościąż catchment. Catena 185, 104286. https://doi.org/10.1016/j.cate....
 
73.
Kruczkowska, B., Jonczak, J., Słowińska, S., Bartczak, A., Kramkowski, M., Uzarowicz, Ł., Tyszkowski, S., Słowiński, M., 2021. Stages of soil development in the coastal zone of a disappearing lake – a case study from central Poland. Journal of Soils and Sediments 21, 1420–1436. https://doi.org/10.1007/s11368....
 
74.
Krüger, J. P., Leifeld, J., Glatzel, S., Szidat, S., Alewell, C., 2015. Biogeochemical indicators of peatland degradation – a case study of temperate bog in northern Germany. Biogeosciences 12, 2861–2871. https://doi.org/10.5194/bg-12-....
 
75.
Kulczyński, S., 1949. Peat bogs of Polesie. Mémoires de l’Académie Polonaise des Sciences et des Lettres, Classe des Sciences Mathématiques et Naturelles, Série B: Sciences Naturelles 15, Cracovie, 356 pp. + 46 phot.
 
76.
Lasota, J., Błońska, E., 2021. C:N:P stoichiometry as an indicator of Histosol drainage in lowland and mountain forest ecosystems. Forest Ecosystems 8, 39. https://doi.org/10.1186/s40663....
 
77.
Leifeld, J., Müller, M., Fuhrer, J., 2011. Peatland subsidence and carbon loss from drained temperate fens. Soil Use and Management 27, 170–176.
 
78.
Leifeld, J., Klein, K., Wüst-Galley, C., 2020. Soil organic matter stoichiometry as indicator for peatland degradation. Scientific Reports 10, 7634. https://doi.org/10.1038/s41598....
 
79.
Lemkowska, B., Sowiński, P., 2018. Limnic Rendzinas in the Mazurian Lakeland (NE Poland). Soil Science Annual 69(2), 109–120. https://doi.org/10.2478/ssa-20....
 
80.
Lehmann, J., Kleber, M., 2015. The contentious nature of soil organic matter. Nature 528, 60.
 
81.
Lipka, K., 1978. Zanikanie torfowisk dawno zmeliorowanych w okolicach Rudnika nad Sanem, Leżajska i Przeworska. [Disappearance of peatlands reclaimed long ago in the vicinity of Rudnik on San, Leżajsk and Przeworsk]. Roczniki Nauk Rolniczych, Ser. F 79(4), 95–127. (in Polish with English summary).
 
82.
Lipka, K., 2000. Torfowiska w dorzeczu Wisły jako element środowisk przyrodniczego. [Peat bogs in the Wisła river basin as an element of the natural environment]. Zeszyty Naukowe Akademii Rolniczej im. H. Kołłątaja w Krakowie, No. 255, 148 pp. + map. (in Polish with English summary).
 
83.
Lipka, K., Zając, E., Hlotov, V., Siejka, Z., 2017. Disappearance rate of a peatland in Dublany near Lviv (Ukraine) drained in 19th century. Mires and Peat 19, 1–15. https://doi.org/10.19189/MaP.2....
 
84.
Liu, H., Price, J., Rezanezhad, F., Lennartz, B., 2020. Centennial-scale shifts in hydrophysical properties of peat induced by drainage. Water Resources Research 56, e2020WR027538. https://doi.org/10.1029/2020WR....
 
85.
Lucas, R. E., 1982. Organic soils (Histosols). Formation, distribution, physical and chemical properties and management for crop production. Research Report 435 (Farm Science), Michigan State University, East Lansing, MI, USA, 77 pp.
 
86.
Łabaz, B., Kabała, C., 2016. Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena 139, 117–126. https://doi.org/10.1016/j.cate....
 
87.
Łachacz, A., 2001. Geneza i właściwości płytkich gleb organogenicznych na sandrze mazursko-kurpiowskim. [Origin and properties of shallow organogenic soils of the Mazury and Kurpie Plain]. Dissertations and Monographs of University of Warmia and Mazury in Olsztyn, No 49, 119 pp. (in Polish with English summary).
 
88.
Łachacz, A., 2016. Peatlands in Poland – specificity, resources, conservation. [In:] Łachacz, A., Kalisz, B. (Eds), Polish National Committee of International Peatland Society – history, activities, achievements. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie, Olsztyn, 11–22.
 
89.
Łachacz, A., 2024. Polish peatland research in Polesye before the Second World War and its impact on the development of peatland knowledge. [In:] Urban, D., Dobrowolski, R., Jeznach, J. (Eds), Environmental engineering in Polesye. Book 3, Polish Polesye. Brest-Rivne-Warsaw-Ryazan, Warsaw University of Life Sciences Press, Warsaw, Poland, 27–41.
 
90.
Łachacz, A., Kalisz, B., 2016. Polish contribution to the study of moorsh-forming process. [In:] Łachacz, A., Kalisz, B. (Eds), Polish National Committee of International Peatland Society – history, activities, achievements. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie, Olsztyn: 115–130.
 
91.
Łachacz, A., Nitkiewicz, S., 2021. Classification of soils developed from bottom lake deposits in north-eastern Poland. Soil Science Annual 72(2), 140643. https://doi.org/10.37501/soils....
 
92.
Łachacz, A., Załuski, D., 2023. The usefulness of the Munsell colour indices for identification of drained soils with various content of organic matter. Journal of Soils and Sediments 23(11), 4017–4031. https://doi.org/10.1007/s11368....
 
93.
Łachacz, A., Nitkiewicz, M., Kalisz, B., 2009. Water repellency of post-boggy soils with a various content of organic matter. Biologia, Section Botany 64(3), 635–639. https://doi.org/10.2478/s11756....
 
94.
Łachacz, A., Kalisz, B., Sowiński, P., Smreczak, B., Niedźwiecki, J., 2023. Transformation of organic soils due to artificial drainage and agricultural use in Poland. Agriculture 13, 634. https://doi.org/10.3390/agricu....
 
95.
Magiera, T., Szuszkiewicz, M. M., Michczyński, A., Chróst, L., Szuszkiewicz, M., 2021. Peat bogs as archives of local ore mining and smelting activities over the centuries: A case study of Miasteczko Śląskie (Upper Silesia, Poland). Catena 198, 105063. https://doi.org/10.1016/j.cate....
 
96.
Malawska, M., Ekonomiuk, A., Wiłkomirski, B., 2006. Chemical characteristics of some peatlands in southern Poland. Mires and Peat 1, 1–14. http://pixelrauschen.de/wbmp/m....
 
97.
Maljanen, M., Sigurdsson, B. D., Guðmundsson, J., Óskarsson, H., Huttunen, J. T., Martikaine, P. J., 2010. Greenhouse gas balances of managed peatlands in the Nordic countries – present knowledge and gaps. Biogeosciences 7, 9, 2711–2738. https://doi.org/10.5194/bgd-6-....
 
98.
Marcinek, J., 1976. Effect of drainage connected with the agriculture and forestry intensification on soil cover transformations. Zeszyty Problemowe Postępów Nauk Rolniczych 177, 73–157. (in Polish with English summary).
 
99.
Marcinek, J., Spychalski, M., 1987. The influence of organic matter content in hydromorphic soils on their physical properties. Roczniki Akademii Rolniczej w Poznaniu, Melioracje 7, 19–33. (in Polish with English summary).
 
100.
Marcinek, J., Spychalski, M., 1998. Degradacja gleb organicznych doliny Obry po ich odwodnieniu i wieloletnim rolniczym użytkowaniu. [Degradation of organic soils in Obra river valley after their drainage and many year agricultural use]. Zeszyty Problemowe Postępów Nauk Rolniczych 460, 219–236. (in Polish with English summary).
 
101.
Markiewicz, M., Mendyk, Ł., Gonet., S. S., 2015. Soil organic matter status in agricultural soil sequence of former shoreline of disappearing Sumowskie lakes, North-Eastern Poland. Polish Journal of Soil Science 48(1), 65–78. http://dx.doi.org/10.17951/pjs....
 
102.
Markiewicz, M., Gonet, S. S., Marszelewski, W., Mendyk, Ł., Sykuła, M., 2017. Differentiation of soils and land use changes in the vicinity of the disappeared Gardeja lake (Northern Poland). Soil Science Annual 68(3), 115–124. https://doi.org/10.1515/ssa-20....
 
103.
Maser, C., Trappe, J. M., 1984. The seen and unseen world of the fallen tree. General Technical Report 164, Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, 56 pp.
 
104.
Meissner, R., Leinweber, P., Rupp, H., Shenker, M., Litaor, M. I., Robinson, S., Schlichting, A., Koehn, J., 2008. Mitigation of diffuse phosphorus pollution during rewetting of fen peat soils: A Trans-European case study. Water, Air, and Soil Pollution 188 (1–4), 111–126. https://doi.org/10.1007/s11270....
 
105.
Meller, E., 2006. Płytkie gleby organogeniczno-węglanowe na kredzie jeziornej i ich przeobrażenia w wyniku uprawy. [Shallow organogenic-calcareous soils on lacustrine chalk and their transformation resulted from cultivation]. Wydawnictwo Akademii Rolniczej w Szczecinie, Rozprawy Nr 233, 115 pp. (in Polish with English summary).
 
106.
Mencel, J., Futa, B., Mocek-Plociniak, A., Mendyk, L., Piernik, A., Kaczmarek, T., Glina, B., 2022. Interplay between selected chemical and biochemical soil properties in the humus horizons of grassland soils with low water table depth. Sustainability 14(24). http://dx.doi.org/10.3390/su14....
 
107.
Mendyk, Ł., Markiewicz, M., Bednarek, R., Świtoniak, M., Gamrat, W. W., Krześlak, I., Sykuła M., Gersztyn, L., Kupniewska, A., 2016. Environmental changes of a shallow kettle lake catchment in a young glacial landscape (Sumowskie Lake catchment), North-Central Poland. Quaternary International 418, 116–131. http://dx.doi.org/10.1016/j.qu....
 
108.
Miklaszewski, S., 1930. Gleby Polski. [Soils of Poland]. 3rd edition. Komisja Wydawnicza Towarzystwa Bratniej Pomocy Studentów Politechniki Warszawskiej, Warszawa, 638 pp. (in Polish).
 
109.
Mirosław-Grabowska, J., Obremska, M., Zawisza, E., Stańczak, J., Słowiński, M., Mulczyk, A., 2020. Biological and geochemical indicators of climatic oscillations during the Last Glacial Termination, the Kaniewo palaeolake (Central Poland). Ecological Indicators 114, 106301. https://doi.org/10.1016/j.ecol....
 
110.
Mocek, A., 1978. Gleby o charakterze murszowym w otulinie Słowińskiego Parku Narodowego. Roczniki Gleboznawcze – Soil Science Annual 29, 3, 175–202. (in Polish with English summary).
 
111.
Musielok, Ł., Kacprzak, A., Opyrchał, J., 2013. Właściwości i pozycja systematyczna gleb wytworzonych na ryolitach w Górach Kamiennych. Prace Geograficzne 135, 21–39.
 
112.
Nagle, H. K., 2000. Folic debris slides near Prince Rupert, British Columbia. PhD Thesis, University of Alberta, Canada, 189 pp.
 
113.
Nicia, P., Bejger, R., Zadrożny, P., Sterzyńska, M., 2018. The impact of restoration processes on the selected soil properties and organic matter transformation of mountain fens under Caltho‐Alnetum community in the Babiogórski National Park in Outer Flysch Carpathians, Poland. Journal of Soil and Sediments 18, 2770–2776. https://doi.org/10.1007/s11368....
 
114.
Norberg, L., Berglund, Ö., Berglund, K., 2018. Impact of drainage and soil properties on carbon dioxide emissions from intact cores of cultivated peat soils. Mires and Peat 21, 03, 1–14.
 
115.
Okruszko, H., 1956. Zjawisko degradacji torfu na tle rozwoju torfowiska. [Phenomenon of peat degradation on the background of peatland development]. Zeszyty Problemowe Postępów Nauk Rolniczych 2, 69–111. (in Polish with English summary).
 
116.
Okruszko, H., 1960. Gleby murszowe torfowisk dolinowych i ich chemiczne oraz fizyczne właściwości. [Muck soils of valley peatlands, and their chemical and physical properties]. Roczniki Nauk Rolniczych, Ser. F, 74(1), 5–89. (in Polish with English summary). Also published as: Translated from the Polish by USDA: TT67-56119; The Central Institute for Scientific, Technical and Economic Information, Warsaw, 79 pp.
 
117.
Okruszko, H., 1964. Changes in phosphorus content of organic hydromorphic soils due to drainage. Roczniki Gleboznawcze – Soil Science Annual 14 (Supl.), 183–195.
 
118.
Okruszko, H., 1969. Powstawanie mułów i gleb mułowych. Roczniki Gleboznawcze – Soil Science Annual 20, 1, 25–49. (in Polish with English summary).
 
119.
Okruszko, H., 1976. Zasady rozpoznawania i podziału gleb hydrogenicznych z punktu widzenia potrzeb melioracji. [Principles of description and classification of hydrogenic soils in the view of their reclamation requirements]. Biblioteczka Wiadomości IMUZ 52, 7–53. (in Polish).
 
120.
Okruszko, H., 1979. Zasady prognozowania warunków wilgotnościowych na glebach hydrogenicznych według koncepcji kompleksów wilgotnościowo-glebowych. [Rules for predicting soil moisture conditions according to the concept of Prognostic Soil-Moisture Complexes]. Biblioteczka Wiadomości IMUZ 58, 7–20. (in Polish).
 
121.
Okruszko, H., 1993. Transformation of fen-peat soils under the impact of draining. Zeszyty Problemowe Postępów Nauk Rolniczych 406, 3–73.
 
122.
Okruszko, H., Ilnicki, P., 2003. The moorsh horizons as quality indicators of reclaimed organic soils. [In:] Parent, L-E., Ilnicki, P. (Eds), Organic soils and peat materials for sustainable agriculture. CRC Press, Boca Raton (USA), 1–14.
 
123.
Okruszko, H., Kozakiewicz, A., 1973. Humification and mineralization as mucking process elements in peat soils. Zeszyty Problemowe Postępów Nauk Rolniczych 146, 63–76. (in Polish with English summary).
 
124.
Okruszko, H., Walczyna, J., 1970. Determination of abundance in phosphorus of meadow organic soils using the extraction in 0.5 n HCl. Roczniki Nauk Rolniczych, Ser. F, 77(3), 437–453. (in Polish with English summary).
 
125.
Okupny, D., 2023. Geochemical characteristics of Late Glacial and Holocene biogenic sediments in central Poland and implications for reconstructing the palaeoenvironment. Acta Geographica Lodziensia 113, 47–76. https://doi.org/10.26485/AGL/2....
 
126.
Okupny, D., Pawłowski, D., 2021. Elemental composition of biogenic sediments reveals palaeoclimatic changes during the Late Weichselian in a Central European river valley: A statistical approach. Catena 200, 105188. https://doi.org/10.1016/j.cate....
 
127.
Oleszczuk, R., Gnatowski, T., Brandyk, T., 2009. Critical peat soils moisture content as a criterion of irreversible swelling process. Acta Agrophysica 14(2), 403–412. (in Polish with English summary).
 
128.
Oleszczuk, R., Łachacz, A., Kalisz, B., 2022. Measurements versus estimates of soil subsidence and mineralization rates at peatland over 50 years (1966–2016). Sustainability 14, 16459. https://doi.org/10.3390/su1424....
 
129.
Oleszczuk, R., Regina, K., Szajdak, L., Höper, H., Maryganova, V., 2008. Impact of agricultural utilization of peat soils on the greenhouse gas balance. [In:] Strack, M. (Ed.), Peatlands and Climate Change. International Peat Society, Jyväskylä, Finland, 70–97.
 
130.
Orzechowski, M., Smólczyński, S., Długosz, J., Kalisz, B., 2022. Spatial variability of water properties of soils formed from glaciolimnic deposits in Sepopol Lowland (Poland) – results from a field-scale study. Journal of Elementology 27(3), 533–544. https://doi.org/10.5601/jelem.....
 
131.
Orzechowski, M., Smólczyński, S., Sowiński, P., Rybińska, B., 2013. Water repellency of soils with various content of organic matter in north-eastern Poland. Soil Science Annual 64(2), 30–33.
 
132.
Page, S. E., Baird, A. J., 2016. Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources 41, 35–57.
 
133.
Papierowska, E., Matysiak, W., Szatyłowicz, J., Debaene, G., Urbanek, E., Kalisz, B., Łachacz, A., 2018. Compatibility of methods used for soil water repellency determination for organic and organo-mineral soils. Geoderma 314, 221–231. https://doi.org/10.1016/j.geod....
 
134.
Pauli, D., Peintinger, M., Schmid, B., 2002. Nutrient enrichment in calcareous fens: effects on plant species and community structure. Basic and Applied Ecology 3, 255–266.
 
135.
Petera-Zganiacz, J., Dzieduszyńska, D. A., Milecka, K., Okupny, D., Słowiński, M., Michczyńska, D. J., Forysiak, J., Twardy, J., 2022. Climate and abiotic landscape controls of Younger Dryas environmental variability based on a terrestrial archive (the Żabieniec mire, Central Poland). Catena 219, 106611. https://doi.org/10.1016/j.cate....
 
136.
Piaścik, H., 1977. Przeobrażenia gleb torfowo-murszowych Pojezierza Mazurskiego ze szczególnym uwzględnieniem zmian w zawartości wapnia, żelaza i glinu. [Changes in peat-muck soils of the Mazurian Lakeland with particular regard to changes in the content of calcium, iron and aluminium]. Zeszyty Naukowe ART Olsztyn, Rolnictwo 23, 3–60. (in Polish with English summary).
 
137.
Piaścik, H., Łachacz, A., 1997. The influence of dewatering and reclamation on water retention of peat soils in the sandy outwash landscape. Polish Journal of Soil Science 30(2), 7–14.
 
138.
Piaścik, H., Łachacz A., 2001. The effects of the muck-forming process on the sorptive properties of peat soils. Polish Journal of Soil Science 34(2), 69–76.
 
139.
Pons, L. J., 1960. Soil genesis and classification of reclaimed peat soils in connection with initial soil formation. Transactions of 7th International Congress of Soil Science, Madison, WI, USA, 4, 205–211.
 
140.
Przesmycka, W., 1974. Occurrence of aluminium, iron and calcium phosphates in peat-muck soil profiles. Wiadomości Instytutu Melioracji i Użytków Zielonych 12(1), 117–138. (in Polish with English summary).
 
141.
Renger, M., Wessolek, G., Schwaerzel, K., Sauerbrey, R., Siewert, C., 2002. Aspects of peat conservation and water management. Journal of Plant Nutrition and Soil Science 165, 487–493.
 
142.
Rezanezhad, F., Price, J.S., Quinton, W.L., Lennartz, B., Milojevic, T., Van Cappellen, P., 2016. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chemical Geology 429, 75–84. https://doi.org/10.1016/j.chem....
 
143.
Róg, Z., 1991. Micromorphologic aspects of the mucking process in differently utilized peat soils of the Experimental Station Biebrza. Wiadomości Instytutu Melioracji i Użytków Zielonych 16(3), 157–176. (in Polish with English summary).
 
144.
Rydin, H., Jeglum, J., 2006. The biology of peatlands. Oxford University Press, 343 pp.
 
145.
Renou-Wilson, F., Moser, G., Fallon, D., Farrell, C. A., Müller, C., Wilson, D., 2019. Rewetting degraded peatlands for climate and biodiversity benefits: Results from two raised bogs. Ecological Engineering 127, 547–560. https://doi.org/10.1016/j.ecol....
 
146.
Riet Van de, B. P., Hefting, M. M., Verhoeven, J. T. A., 2013. Rewetting drained peat meadows: risks and benefits in terms of nutrient release and greenhouse gas exchange. Water, Air and Soil Pollution 224, 1440. https://doi.org/10.1007/s11270....
 
147.
Roj-Rojewski, S., Walasek, M., 2013. Katena gleb mułowo-madowych w okolicy Suraża w Dolinie Górnej Narwi. Soil Science Annual 64, 2, 34–40.
 
148.
Rząsa, S., 1963. Geneza i ewolucja mineralnych gleb murszowych na terenie odwadnianym. [Genesis and evolution of mineral muck soils in the terrain being drained]. Roczniki Wyższej Szkoły Rolniczej w Poznaniu 18, 151–223. (in Polish with English summary).
 
149.
Sapek, A., Sapek, B., 1986. The use of 0.5 M sodium hydroxide extract for characterizing humic substances from organic formations. Roczniki Gleboznawcze – Soil Science Annual 37(2/3), 139–147. (in Polish with English summary).
 
150.
Sapek, A., Sapek, B., 1992. Testing of grassland soils in Poland. Communications in Soil Science and Plant Analysis 23(17–20), 2165–2171. https://doi.org/10.1080/001036....
 
151.
Sapek, A., Sapek, B., 1997. Metody analizy chemicznej gleb organicznych. [Methods of chemical analyses of organic soils]. Materiały instruktażowe IMUZ, Falenty, No. 115, 80 pp. (in Polish).
 
152.
Sapek, B., Sapek, A., 1987. Changes in the properties of humus substances and the sorption complex in reclaimed peat soils. International Peat Journal 2, 99–117.
 
153.
Sapek, B., Sapek, A., 1993. Investigations of the specificity and effects of the secondary humification process of soils formed from various types of organic materials. Zeszyty Problemowe Postępów Nauk Rolniczych 406, 83–93.
 
154.
Saurette, D.D., Deragon, R., 2023. Better recognition of limnic materials at the great group and subgroup levels of the Organic Order of the Canadian System of Soil Classification. Canadian Journal of Soil Science 103(1), 1–20. https://doi.org/10.1139/CJSS-2....
 
155.
Schulz, C., Meier-Uhlherr, R., Luthardt, V., Joosten, H., 2019. A toolkit for field identification and ecohydrological interpretation of peatland deposits in Germany. Mires and Peat 24, 1–20. https://doi.org/10.19189/MaP.2....
 
156.
Sender, J., Różańska-Boczula, M., Urban, D., 2022. Active protection of endangered species of peat bog flora (Drosera intermedia, D. anglica) in the Łęczna-Włodawa Lake District. Water 14, 2775. https://doi.org/10.3390/w14182....
 
157.
SGP 1, 1956. Przyrodniczo-genetyczna klasyfikacja gleb Polski ze szczególnym uwzględnieniem gleb uprawnych [A natural and genetical classification of Polish soils]. Roczniki Nauk Rolniczych 74, Seria D, 1–96. (in Polish with English summary).
 
158.
SGP 2, 1959. Genetyczna klasyfikacja gleb Polski [Genetical classification of Polish soils]. Roczniki Gleboznawcze – Soil Science Annual 7(2), 1–103. (in Polish with English summary).
 
159.
SGP 3, 1974. Systematyka gleb Polski [Polish soil classification]. Roczniki Gleboznawcze – Soil Science Annual 25(1), 1–148. (in Polish with English summary).
 
160.
SGP 4, 1989. Systematyka gleb Polski [Polish soil classification]. Roczniki Gleboznawcze – Soil Science Annual 40(3/4), 1–150. (in Polish with English summary).
 
161.
SGP 5, 2011. Systematyka gleb Polski [Polish soil classification]. Roczniki Gleboznawcze – Soil Science Annual 62(3), 1–193. (in Polish with English summary).
 
162.
SGP 6, 2019. Systematyka gleb Polski [Polish soil classification]. Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Instytut Nauk o Glebie i Ochrony Środowiska Uniwersytetu Przyrodniczego we Wrocławiu; Polskie Towarzystwo Gleboznawcze. Komisja Genezy, Klasyfikacji i Kartografii Gleb, Wrocław–Warszawa, 292 pp. (in Polish).
 
163.
Sim, T.G., Swindles, G.T., Morris, P.J., Baird, A.J., Gallego-Sala, A.V., Wang, Y., Zhang, H., 2023. Regional variability in peatland burning at mid-to high-latitudes during the Holocene. Quaternary Science Reviews 305. https://doi.org/10.1016/j.quas....
 
164.
Skiba, S., 2006. Pokrywa glebowa strefy wysokogórskiej Karpat i jej zagrożenia. Roczniki Bieszczadzkie 14, 201–214. (in Polish with English summary).
 
165.
Skiba, S., Komornicki, T., 1983. Gleby organiczno-sufozyjne w Tatrach Polskich. Roczniki Gleboznawcze – Soil Science Annual 34, 4, 113–122. (in Polish with English summary).
 
166.
Skiba, S., Drewnik, M., Szmuc, R., Prędki, R., 1998. Gleby Bieszczadzkiego Parku Narodowego. [Soils of the Bieszczady National Park]. Monografie Bieszczadzkie 2, 88 pp. + map. (in Polish with English summary).
 
167.
Skiba, S., Kacprzak, A., Szymański, W., Musielok, Ł., 2011. Walory przyrodnicze górskich gleb rumoszowych. [Natural value of mountain debris soils]. Roczniki Bieszczadzkie 19, 335–348. (in Polish with English summary).
 
168.
Skiba, S., Szymański, W., Prędki, R., 2014. Badania gleboznawcze w Karpatach Wschodnich i ich znaczenie w ochronie gleb Bieszczadzkiego Parku Narodowego. Roczniki Bieszczadzkie 22, 129–140. (in Polish with English summary).
 
169.
Słowiński, M., Marcisz, K., Płóciennik, M., Obremska, M., Pawłowski, D., Okupny, D., Słowińska, S., Borówka, R., Kittel, P., Forysiak, J., Michczyńska, D. J., Lamentowicz, M., 2016. Drought as a stress driver of ecological changes in peatland – A palaeoecological study of peatland development between 3500 BCE and 200 BCE in central Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 461, 272–291. http://dx.doi.org/10.1016/j.pa....
 
170.
Smólczyński, S., Orzechowski, M., 2010a. Soils of ecotone zones of meltwater basins and slopes in a young glacial landscape of the Mazurian Lakeland. Soil Science Annual 61(4), 217–226.
 
171.
Smólczyński, S., Orzechowski, M., 2010b. Sorptive properties of upper-silted organic soils in various landscapes of north-eastern Poland. Polish Journal of Soil Science, 43(2), 129–140.
 
172.
Smólczynski, S., Kalisz, B., Orzechowski, M., 2011. Sequestration of humus compounds in soils of northeastern Poland. Polish Journal of Environmental Studies 20, 755–762.
 
173.
Smólczynski, S., Orzechowski, M., Kalisz, B., 2015. Distribution of elements in soil catenas developed in ice-dammed lake and in morainic landscapes in NE Poland. Journal of Elementology 20(2), 417–434. https://doi.org/10.5601/jelem.....
 
174.
Smólczyński, S., Orzechowski, M., Kalisz, B., Sowiński, P., Urbanowicz, P., 2016. Soil air-water properties in catena of Sępopol Lowland. Polish Journal of Soil Science 49, 91–99.
 
175.
Smólczyński, S., Kalisz, B., Urbanowicz, P., Orzechowski, M., 2021. Effect of peatland siltation on total and labile C, N, P and K. Sustainability 13, 8240. https://doi.org/10.3390/su1315....
 
176.
Soil Survey Staff, 2022. Keys to Soil Taxonomy, 13th ed. USDA-Natural Resources Conservation Service, Washington, DC.,USA, 401 pp.
 
177.
Soil Taxonomy, 1999. A basic system of soil classification for making and interpreting soil surveys. Soil Survey Staff, USDA-NRCS. Agriculture Handbook, No. 436. US Government Printing Office, Washington, DC. 869 pp.
 
178.
Sowiński, P., Smólczyński, S., Orzechowski, M., 2004. Gleby obniżeń śródmorenowych jako bariery biogeochemiczne w krajobrazie rolniczym Pojezierza Mazurskiego. [Soils of mid-moraine depressions as a biogeochemical barriers in a agriculture landscape of Mazurian Lakeland]. Roczniki Gleboznawcze – Soil Science Annual 55(2), 365–372. (in Polish with English summary).
 
179.
Sowiński, P., 2016. Variability of the content of macroelements in soils of a young glacial river valley – a geochemical landscape approach. Journal of Elementology 21(4), 1343–1358. https://doi.org/10.5601/jelem.....
 
180.
Sowiński, P., Glińska-Lewczuk, K., Kalisz, B., Astel, A., 2016. Distribution of heavy metals in soils in a postglacial river valley – a geochemical approach. Environmental Engineering and Management Journal 15(6), 1323–1335.
 
181.
Strzemski, M., 1980. Historia gleboznawstwa polskiego od zarania polskiego piśmiennictwa rolniczo-gleboznawczego do powstania Drugiej Rzeczypospolitej. [History of Polish soil science]. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, 224 pp. (in Polish).
 
182.
Sulwiński, M., Mętrak, M., Wilk, M., Suska-Malawska, M., 2020. Smouldering fire in a nutrient-limited wetland ecosystem: Long-lasting changes in water and soil chemistry facilitate shrub expansion into a drained burned fen. Science of the Total Environment 746, 141142. https://doi.org/10.1016/j.scit....
 
183.
Suonan, J., Classen, A. T., Sanders, N. J., He, J. S., 2019. Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere 10, 1, 1–15.
 
184.
Szatyłowicz, J., Gnatowski, T., Szejba, D., Oleszczuk, R., Brandyk, T., Kechavarzi, C., 2007. Moisture content variability in drained fen soil. [In:] Okruszko, T., Maltby, E., Szatyłowicz, J., Swiatek, D., Kotowski, W. (Eds), Wetlands: Monitoring, Modelling and Management. Taylor & Francis Group, London, UK, 113–120.
 
185.
Szatyłowicz, J., Papierowska, E., Gnatowski, T., Szejba, D., Łachacz, A., 2024. Effect of vegetation cover and soil moisture on water repellency persistence of drained peat soils. Biologia. https://doi.org/10.1007/s11756....
 
186.
Szuniewicz, J., 1979. Charakterystyka kompleksów wilgotnościowo-glebowych pod kątem parametrów systemu melioracyjnego. [Characteristics of soil-moisture complexes in terms of drainage system parameters]. Biblioteczka Wiadomości IMUZ 58, 29–50. (in Polish).
 
187.
Szuniewicz, J., Szymanowski, M., 1977. Physico-hydrological properties and the formation of air-water conditions on distinguished sites of the Wizna fen. Polish Ecological Studies 3(3), 17–31.
 
188.
Świtoniak, M., Kabała, C., Charzyński, P., 2016. Proposal of English equivalents for the soil taxa names in the Polish Soils Classification. Soil Science Annual 67(3), 103–116. https://doi.org/10.1515/ssa-20....
 
189.
Telega, P., 2022. Gleby organiczne ściółkowe – geneza, właściwości i rola ekologiczna w ekosystemach górskich. [Folic Histosols – genesis, properties and ecological role in mountain ecosystem]. PhD Thesis, Wrocław University of Life Science, 221 pp. (in Polish with English summary).
 
190.
Tiemeyer, B., Kahle, P., 2014. Nitrogen and dissolved organic carbon (DOC) losses from an artificially drained grassland on organic soils. Biogeosciences 11, 4123–4137. https://doi.org/10.5194/bg-11-....
 
191.
Tiemeyer, B., Frings, J., Kahle, P., Köhne, S., Lennartz, B., 2007. A comprehensive study of nutrient losses, soil properties and groundwater concentrations in a degraded peatland used as an intensive meadow: Implications for re-wetting. Journal of Hydrology 345, 80–101.
 
192.
Tobolski, K., 2000. Przewodnik do oznaczania torfów i osadów jeziornych. [A guide for identifying peats and lacustrine deposits]. Wydawnictwo Naukowe PWN, Warszawa, 508 pp. (in Polish).
 
193.
Tobolski, K., Mocek, A., Dzięciołowski, W., 1997. Gleby Słowińskiego Parku Narodowego w świetle historii roślinności i podłoża. [Soils of the Słowiński National Park in the light of history of vegetation and geological substrate]. Wydawnictwo Homini, Bydgoszcz-Poznań, 183 pp. + 4 maps (in Polish).
 
194.
Tołpa, S., Jasnowski, M., Pałczyński, A., 1967. System der genetischen Klassifizierung der Torfe Mitteleuropas. Zeszyty Problemowe Postępów Nauk Rolniczych 76, 9–99. (in German with English summary).
 
195.
Tomaszewski, J., 1950. The essential conditions of the origination, development and metamorphosis of swampy soils. Roczniki Nauk Rolniczych 54, 607–629. (in Polish with English summary).
 
196.
Tomaszewski, J., 1958. Processes in bog soil “from above” and “from below”. Zeszyty Problemowe Postępów Nauk Rolniczych 17, 113–120. (in Polish with English summary).
 
197.
Tuohy, P., O’ Sullivan, L., Bracken, C. J., Fenton, O., 2023. Drainage status of grassland peat soils in Ireland: Extent, efficacy and implications for GHG emissions and rewetting efforts. Journal of Environmental Management 344, 118391. https://doi.org/10.1016/j.jenv....
 
198.
Uggla, H., 1968. Bagienne i murszowe gleby gytiowiska Gązwa. [Bog and mull soils of the gyttja moorland at Gązwa]. Roczniki Gleboznawcze – Soil Science Annual 18(2), 369–414. (in Polish with English summary).
 
199.
Uggla, H., 1976. „Rędziny” Pojezierza Mazurskiego. [Rendzinas in the Mazurian Lakeland]. Roczniki Gleboznawcze – Soil Science Annual 27(2), 113–125. (in Polish with English summary).
 
200.
Urban, D., 2004. Siedliska hydrogeniczne oraz geneza i ewolucja wybranych torfowisk dolinowych Wyżyny Lubelskiej i Wołyńskiej. [Humidity habitats as well as the genesis and evolution of selected valley peat lands in the Lublin and Volhynia Uplands. Rozprawy Naukowe Akademii Rolniczej w Lublinie, No. 287, Lublin, 144 pp. (in Polish with English summary).
 
201.
Vasander, H., Tuittila, E. S., Lode, E., Lundin, L., Ilomets, M., Sallantaus, T., ... & Laine, J., 2003. Status and restoration of peatlands in northern Europe. Wetlands Ecology and Management 11, 51–63. https://doi.org/10.1023/A:1022....
 
202.
Volungevicius, J., Amaleviciute-Volunge, K. 2023. A conceptual approach to the Histosols profile morphology as a risk indicator in assessing the sustainability of their use and impact on climate change. Sustainability 15, 14024. https://doi.org/10.3390/su1518....
 
203.
Walczyna, J., 1974. Organic-mineral compounds in drained hydrogenic soils and evolution trends of these soils. Roczniki Gleboznawcze – Soil Science Annual 25(2), 179–200. (in Polish with English summary).
 
204.
Wittnebel, M., Tiemeyer, B., Dettmann, U., 2021. Peat and other organic soils under agricultural use in Germany: Properties and challenges for classification. Mires and Peat 27, 19.
 
205.
Wondrausch, J., 1963. The rate of “mursh” process and moisture in relation to the chemical compostion of “mursh” soils formed out of low moor. Roczniki Gleboznawcze – Soil Science Annual 13(Supl.), 206–210. (in Polish with English summary).
 
206.
Wójciak, H., 2004. Właściwości materii organicznej w odwodnionych glebach torfowych. [Properties of the organic matter in drained peat soils]. Dissertations and Monographs of University of Warmia and Mazury in Olsztyn, No 97, 71 pp. (in Polish with English summary).
 
207.
Xu, J. R., Morris, P. J., Liu, J .G., Holden, J., 2018. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140. https://doi.org/10.1016/j.cate....
 
208.
Zając, E., Zarzycki, J., Ryczek, M., 2018. Degradation of peat surface on an abandoned post-extracted bog and implications for re-vegetation. Applied Ecology and Environmental Research 16(3), 3363–3380, http://dx.doi.org/10.15666/aee....
 
209.
Zak, D., Gelbrecht, J., Zerbe, S., Shatwell, T., Barth, M., Cabezas, A., Steffenhagen, P., 2014. How helophytes influence the phosphorus cycle in degraded inundated peat soils – Implications for fen restoration. Ecological Engineering 66, 82–90. https://doi.org/10.1016/j.ecol....
 
210.
Zawadzki, S., 1957. Investigations on the origin and evolution of bog soils rich in calcium carbonate in the Lublin District. Annales Universitatis Mariae Curie-Skłodowska, Sectio E, 12(1), 1–86. (in Polish with English summary).
 
211.
Zawadzki, S., 1970. Relationship between the content of organic matter and physical properties of hydrogenic soils. Polish Journal of Soil Science 3(1), 3–9.
 
212.
Ziółek, M., 2007. Phosphorus forms in organic soils with a varying degree of transformation (on the example of the Lublin Polesie region). Polish Journal of Soil Science 49(2), 179–194.
 
213.
Żurek, S., 1987. Złoża torfowe Polski na tle stref torfowych Europy. [Peat deposits of Poland against the peat zones of Europe]. Dokumentacja Geograficzna 4, 1–184. (in Polish).
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top