PL EN
ORIGINAL PAPER
Organic soils and other soils rich in organic matter in the vicinity of the Łuknajno lake, Masurian Lakes Biosphere Reserve, NE Poland
 
More details
Hide details
1
Katedra Gleboznawstwa i Mikrobiologii, UWM Olsztyn, Polska
 
2
Katedra Gleboznawstwa i Mikrobiologii, UWM w Olsztynie, Polska
 
 
Submission date: 2024-10-22
 
 
Final revision date: 2024-12-12
 
 
Acceptance date: 2025-03-01
 
 
Online publication date: 2025-03-01
 
 
Publication date: 2025-03-01
 
 
Corresponding author
Andrzej Łachacz   

Katedra Gleboznawstwa i Mikrobiologii, UWM Olsztyn, Plac Łódzki 3,, 10–727, Olsztyn, Polska
 
 
Soil Sci. Ann., 2024, 75(4)202474
 
KEYWORDS
ABSTRACT
The study covers the immediate surroundings of the Łuknajno lake. The soil cover here is largely affected by the water regime, i.e. ground water level. Eleven soil profiles were described, and the following analyses were carried out: soil texture (in mineral soil materials), CaCO3 content, soil reaction, content of exchangeable cations, organic carbon and total nitrogen contents, specific and bulk density, total porosity, and organic carbon stock. According to the Polish Soil Classification (2019), six soil profiles were classified within the order of organic soils (4 profiles as peat soils, one as murshic soil and one as gyttja soil). Mineral soil profiles were classified as: mineral-peaty gleysol, gleyic chernozemic colluvial soil, humic regosol, typical semimurshic soil and typical postmurshic soil. According to the WRB classification (2022), 5 profiles were classified as Histosols (Drainic Sapric Histosols, Murshic Fibric Histosols, Murshic Sapric Histosols, Rheic Histosols). The neighbouring soils were classified as: Calcaric Histic Gleysols, Calcaric Regosols, Haplic Umbrisols, Gleyic Arenosols, Mollic Gleysols, Eutric Arenosols. The properties of studied soils are related to the high content of calcium carbonate which was leached from the soils of the catchment area and had accumulated in the basin of the Łuknajno lake in the form of thick layers of calcareous gyttja. The characteristic feature of studied soils is high organic carbon stock. For organic soils this stock was within the range of 74.4-111.9 kg Corg m-2 (to 150 cm down the soil profile). The neighbouring soils also have significant organic carbon stock (15.8–28.6 kg m-2), which is recognizably higher than the stock in mineral sandy soils. Therefore, in estimations of organic carbon stock these soils should be taken into account although they cover small and scattered areas.
REFERENCES (63)
1.
Bartmiński, P., Świtoniak, M., Drewnik, M., Kowalska, J.B., Sowiński, P., Żyła, M., Bieganowski, A., 2022. Methodological problems with the classification and measurement of soils containing carbonates. Soil Science Annual 73(1), 149235. https://doi.org/10.37501/soils....
 
2.
Bellamy, D.J., 1962. Some observations on the peat bogs of the Wilderness of Pisz. Przegląd Geograficzny 34(4), 691–716.
 
3.
Dąbrowski, M., 2002. Changes in the water level of lakes in northeastern Poland. Limnological Review 2, 85–92.
 
4.
Fenton, O., Bondi, G., Bracken, C. J., O’Sullivan, L., Lopez-Sangil, L., Tuohy, P., Daly, K., 2024. Relative and absolute difference in soil organic carbon stocks in grassland soils in Ireland: Impact of rock fragments, bulk density and calculation methods. Geoderma Regional 36, e00769. https://doi.org/10.1016/j.geod....
 
5.
Galluzzi, G., Plaza, C., Priori, S., Giannetta, B., Zaccone, C., 2024. Soil organic matter dynamics and stability: Climate vs. time. Science of the Total Environment 929, 172441. https://doi.org/10.1016/j.scit....
 
6.
Gąsiorowski, M., 2001. Lacustrine chalk deposition in Lake Kruklin (NE Poland) as a result of decalcification of the lake catchment. Studia Quaternaria 18, 17–24.
 
7.
Ilnicki, P., 2002. Torfowiska i torf. [Peatlands and peat]. Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego w Poznaniu, Poznań, 606 pp. (in Polish).
 
8.
IUSS Working Group WRB. 2022. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS), Vienna, Austria, 234 pp.
 
9.
Jarnuszewski, G., Meller, E., 2018. Morphological and physical properties of dehydrated Holocene carbonate limnic deposits in post-bog areas of NW Poland. Journal of Ecological Engineering 19(1), 136–142. https://doi.org/10.12911/22998....
 
10.
Jarnuszewski, G., Meller, E., 2019. Total content of macroelements and trace elements in Holocene calcareous gyttja from the post-bog area of north-western Poland. Soil and Water Research 14(1), 40–46. https://doi.org/10.17221/146/2....
 
11.
Jarnuszewski, G., Meller, E., Kitczak T., 2023. Evolution of shallow post-bog soils developed on Holocene carbonate sediments in NW Poland. Journal of Water and Land Development 58(7–9), 99–109. https://doi.org/10.24425/JWLD.... 2023.
 
12.
Kabała, C., et al., 2019. Polish Soil Classification, 6th edition – Principles, classification scheme and correlations. Soil Science Annual 70, 71–97. https://doi.org/10.10.2478/ssa....
 
13.
Kalisz, B., Łachacz, A., 2023. Relations between labile and stable pool of soil organic carbon in drained and rewetted peatlands. Journal of Elementology 28(2), 263–278. http://dx.doi.org/10.5601/jele....
 
14.
Kalisz, B., Łachacz, A., Głażewski, R., 2010. Transformation of some organic matter components in organic soils exposed to drainage. Turkish Journal of Agriculture and Forestry 34(3), 245–256. https://doi.org/10.3906/tar-09....
 
15.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15(3), 259–263. https://doi.org/10.1127/0941-2....
 
16.
Kruczkowska, B., 2024. Soil cover modifications in vicinity of disappearing lakes as a result of climate change. Acta Horticulturae et Regiotecturae 27(1), 35–41. https://doi.org/10.2478/ahr-20....
 
17.
Kruczkowska, B., Jonczak, J., Słowińska, S., Bartczak, A., Kramkowski, M., Uzarowicz, Ł., Tyszkowski, S., Słowiński, M., 2021. Stages of soil development in the coastal zone of a disappearing lake – a case study from central Poland. Journal of Soils and Sediments 21, 1420–1436. https://doi.org/10.1007/s11368....
 
18.
Królikowska, J., 1997. Eutrophication processes in a shallow, macrophyte-dominated lake – species differentiation, biomass and the distribution of submerged macrophytes in Lake Łuknajno (Poland). Hydrobiologia 342/343, 411–416.
 
19.
Kufel, I., Kufel, L., 1997. Eutrophication processes in a shallow, macrophyte-dominated lake – nutrient loading to and flow through Lake Łuknajno (Poland). Hydrobiologia 342/343, 387–394.
 
20.
Labaz, B., Kowalska, J. B., Kabala, C., Kobierski, M., Waroszewski, J., Dudek, M., Szopka, K., Gruszka, D., 2024. Distribution and pools of soil organic carbon in chernozemic soils impacted by intensive farming and erosion in the loess plateau in south-east Poland. Agronomy 14, 2544. https://doi.org/10.3390/agrono....
 
21.
Lasota, J., Błońska, E., 2021. C:N:P stoichiometry as an indicator of Histosol drainage in lowland and mountain forest ecosystems. Forest Ecosystems 8, 39 https://doi.org/10.1186/s40663....
 
22.
Leifeld, J., Klein, K., Wüst-Galley, C., 2020. Soil organic matter stoichiometry as indicator for peatland degradation. Scientific Reports 10, 7634. https://doi.org/10.1038/s41598....
 
23.
Leifeld, J., Müller, M., Fuhrer, J., 2011. Peatland subsidence and carbon loss from drained temperate fens. Soil Use and Management 27, 170–176.
 
24.
Lemkowska, B., Sowiński, P., 2018. Limnic Rendzinas in the Mazurian Lakeland (NE Poland). Soil Science Annual 69(2), 109–120. https://doi.org/10.2478/ssa-20....
 
25.
Lisicki, S., 2001. Geneza niecki jeziora Śniardwy i budowa geologiczna jej otoczenia w świetle nowych danych geologicznych. [Origin of the Lake Śniardwy basin and geological structure of its vicinity based on new geologic data]. Biuletyn Państwowego Instytutu Geologicznego 397, 133–150. (in Polish with English summary).
 
26.
Lorenz, K., Lal, R., Ehlers, K., 2019. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degradation & Development 30(7), 824–838. http://dx.doi.org/10.1002/ldr.....
 
27.
Łabaz, B., Kabała, C., 2016. Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena 139, 117–126. https://doi.org/10.1016/j.cate....
 
28.
Łachacz, A., 2001. Geneza i właściwości płytkich gleb organogeniczych na sandrze mazursko-kurpiowskim. [Origin and properties of shallow organogenic soils of the Mazury and Kurpie Plain]. Dissertations and Monographs of University of Warmia and Mazury in Olsztyn, No 49, 119 pp. (in Polish with English summary).
 
29.
Łachacz, A., Nitkiewicz, S., 2021. Classification of soils developed from bottom lake deposits in north-eastern Poland. Soil Science Annual 72(2), 140643. https://doi.org/10.37501/soils....
 
30.
Łachacz A., Załuski D., 2023. The usefulness of the Munsell colour indices for identification of drained soils with various content of organic matter. Journal of Soils and Sediments 23(11), 4017–4031. https://doi.org/10.1007/s11368....
 
31.
Łachacz, A., Nitkiewicz, M., Pisarek, W., 2009. Soil conditions and vegetation on gyttja lands in the Masurian Lakeland. [In:] Łachacz, A. (Ed.), Wetlands – their functions and protection. University of Warmia and Mazury in Olsztyn, 61–94.
 
32.
Łachacz, A., Kalisz, B., Sowiński, P., Smreczak, B., Niedźwiecki, J., 2023. Transformation of organic soils due to artificial drainage and agricultural use in Poland. Agriculture 13, 634. https://doi.org/10.3390/agricu....
 
33.
Markiewicz, M., Gonet, S. S., Marszelewski, W., Mendyk, Ł., Sykuła, M., 2017. Differentiation of soils and land use changes in the vicinity of the disappeared Gardeja lake (Northern Poland). Soil Science Annual 68(3), 115–124. https://doi.org/10.1515/ssa-20....
 
34.
Markiewicz, M., Mendyk, Ł., Gonet, S. S., 2015. Soil organic matter status in agricultural soil sequence of former shoreline of disappearing Sumowskie lakes, North-Eastern Poland. Polish Journal of Soil Science 48(1), 65. http://dx.doi.org/10.17951/pjs....
 
35.
Meller, E., 2006. Shallow organogenic-calcareous soils on lacustrine chalk and their transformation resulted from cultivation. Akademia Rolnicza w Szczecine, Rozprawy 233, 115 pp. (in Polish with English summary).
 
36.
Meyers, P. A., Lallier-Vergès, E., 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. Journal of Paleolimnology 21, 345–372.
 
37.
Munsell Color Company, 1994. Munsell Soil Color Charts. Munsell Color, Macbeth Division of Kollmorgen Instruments Corporation, New Windsor, NY, USA.
 
38.
Novik, A., Punning, J.-M., Zernitskaya, V., 2010. The development of Belarusian lakes during the Late Glacial and Holocene. Estonian Journal of Earth Sciences 59, 63–79.
 
39.
Okruszko, H., 1993. Transformation of fen-peat soils under the impact of draining. Zeszyty Problemowe Postępów Nauk Rolniczych 406, 3–73.
 
40.
Oleszczuk, R., Łachacz, A., Kalisz, B., 2022. Measurements versus estimates of soil subsidence and mineralization rates at peatland over 50 years (1966–2016). Sustainability 14, 16459, https://doi.org/10.3390/su1424....
 
41.
Olszewski, P., Paschalski J., 1959. Wstępna charakterystyka limnologiczna niektórych jezior Pojezierza Mazurskiego. [Preliminary limnological characterization of some lakes in the Mazurian Lake District]. Zeszyty Naukowe WSR w Olsztynie 4, 1–109. (in Polish with English summary).
 
42.
Piaścik, H., Łachacz, A., 1997. The influence of dewatering and reclamation on water retention of peat soils in the sandy outwash landscape. Polish Journal of Soil Science 30(2), 7–14.
 
43.
Piaścik, H., Łachacz A., 2001. The effects of the muck-forming process on the sorptive properties of peat soils. Polish Journal of Soil Science 34(2), 69–76.
 
44.
Polakowski B., Dziedzic, J., Polakowska, E., 1973. Roślinność rezerwatu „Jezioro Łukniany” na Pojezierzu Mazurskim. [The vegetation of the „Łukniany Lake” nature reserve in the Mazurian Lake District]. Ochrona Przyrody – Nature Protection 38, 85–114. (in Polish with English summary).
 
45.
Prusinkiewicz, Z., Noryśkiewicz, B., 1975. Geochemical and paleopedological aspects of the origin of lake chalk as the parent rock for northern Poland rendzinas. Acta Universitatis Nicolai Copernici, Nauki Matematyczno-Przyrodnicze 35, Geografia 11, 115–137. (in Polish with English summary).
 
46.
Prusinkiewicz, Z., Proszek, P., 1990. Program komputerowej interpretacji wyników analizy uziarnienia gleb – TEKSTURA. [“TEXTURE” – the program of computer interpretation of results of soil particle size analysis]. Roczniki Gleboznawcze – Soil Science Annual 41(3/4), 5–16. (in Polish with English summary).
 
47.
Rumpel, C., Kögel-Knabner, I., 2011. Deep soil organic matter – a key but poorly understood component of terrestrial C cycle. Plant Soil 338, 143–158. https://doi.org/10.1007/s11104....
 
48.
Sapek, A., Sapek, B., 1992. Testing of grassland soils in Poland. Communications in Soil Science and Plant Analysis 23(17–20), 2165–2171. https://doi.org/10.1080/001036....
 
49.
Siewca, 2010, version 3.0, BJB Software House: Poznań, Poland.
 
50.
Solon, J. Borzyszkowski, J., Bidlasik, M., Richling, A., Badora, K., Balon, J., Brzezinska-Wojcik, T., Chabudzinski, L., Dobrowolski, R., Grzegorczyk, I. et al., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2), 143–170. https://doi.org/10.7163/GPol.0....
 
51.
Sowiński, P., Smólczyński, S., Orzechowski, M., Kalisz, B., Bieniek, A., 2023. Effect of soil agricultural use on particle-size distribution in young glacial landscape slopes. Agriculture 13, 584. https://doi.org/10.3390/agricu....
 
52.
Srokowski, S., 1930. Jeziora i moczary Prus Wschodnich. [Lakes and swamps of the East Prussia]. Wojskowy Instytut Naukowo-Wydawniczy, Warszawa, 137 pp. (in Polish).
 
53.
SGP 2019. Systematyka gleb Polski, wyd. 6, 2019. [Polish Soil Classification, 6th ed., 2019]. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Instytut Nauk o Glebie i Ochrony Środowiska Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze. Komisja Genezy, Klasyfikacji i Kartografii Gleb, Wrocław–Warszawa, 292 pp. (in Polish with English abstract).
 
54.
Świtoniak, M., 2023. Assessment of soil organic carbon stocks differentiation in humus horizons of clay-illuvial soils within young morainic landscapes, northern Poland. Soil Science Annual 74(4), 176684. https://doi.org/10.37501/soils....
 
55.
Tobolski, K., 2000. Przewodnik do oznaczania torfów i osadów jeziornych. [A guide for identifying peats and lacustrine deposits]. Wydawnictwo Naukowe PWN, Warszawa, 508 pp. (in Polish).
 
56.
Tuohy, P., O’ Sullivan, L., Bracken, C. J., Fenton, O., 2023. Drainage status of grassland peat soils in Ireland: Extent, efficacy and implications for GHG emissions and rewetting efforts. Journal of Environmental Management 344, 118391. https://doi.org/10.1016/j.jenv....
 
57.
Uggla, H., 1964. The influence of the drainage area on the formation and some properties of the lake sediments. Zeszyty Naukowe WSR w Olsztynie 17(355), 645–654. (in Polish with English summary).
 
58.
Uggla, H., 1968. Bagienne i murszowe gleby gytiowiska Gązwa. [Bog and mull soils of the gyttja moorland at Gązwa]. Roczniki Gleboznawcze – Soil Science Annual 18(2), 369–414. (in Polish with English summary).
 
59.
Uggla, H., 1976. „Rędziny” Pojezierza Mazurskiego. [Rendzinas in the Mazurian Lakeland]. Roczniki Gleboznawcze – Soil Science Annual 27(2), 113–125. (in Polish with English summary).
 
60.
van Reeuwijk, L. P., (Ed.). 2002. Procedures for soil analysis. Sixth ed. International Soil Reference and Information Centre, Technical Papers 9, Wageningen, the Netherlands, 120 pp.
 
61.
Vittori Antisari, L., Trenti, W., Buscaroli, A., Falsone, G., Vianello, G., De Feudis, M., 2023. Pedodiversity and organic matter stock of soils developed on sandstone formations in the Northern Apennines (Italy). Land 12, 79. https://doi.org/10.3390/land12....
 
62.
Wiesmeier, M., Spörlein, P., Geuß, U., Hangen, E., Haug, S., Reischl, A., Schilling, B., von Lützow, M., Kögel-Knabner, I., 2012. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Global Change Biology 18(7), 2233-2245. https://doi.org/10.1111/j.1365....
 
63.
Więckowski, K., 1966. Osady denne jeziora Mikołajskiego. [Bottom deposits of Lake Mikołajki]. Prace Geograficzne 57, 1–112. (in Polish with English summary).
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top