PL EN
PRACA ORYGINALNA
Występowanie bielicowania w glebach wytworzonych z fliszu na Pogórzu Wielickim (Zewnętrzne Karpaty Zachodnie, południowa Polska)
 
Więcej
Ukryj
1
Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński, Polska
 
 
Data nadesłania: 03-09-2021
 
 
Data ostatniej rewizji: 20-01-2022
 
 
Data akceptacji: 20-03-2022
 
 
Data publikacji online: 20-03-2022
 
 
Autor do korespondencji
Łukasz Musielok   

Instytut Geografii i Gospodarki Przestrzennej, Uniwersytet Jagielloński, Gronostajowa, 7, 2.13, 30-387, Kraków, Polska
 
 
Soil Sci. Ann., 2022, 73(1)147507
 
SŁOWA KLUCZOWE
STRESZCZENIE
Proces bielicowania odgrywa kluczową rolę w kształtowaniu siedlisk leśnych i magazynowaniu węgla organicznego w glebach. Na Pogórzu Karpackim rozwój gleb bielicowych jest utrudniony przez właściwości materiału macierzystego – przede wszystkim bezwęglanowych utworów lessowych lub zwietrzeliny skał fliszowych. Sporadycznie na tym obszarze występują jednak gleby objęte procesem bielicowania. Celem pracy było określenie progu występowania bielicowania w glebach wytworzonych z fliszowego materiału macierzystego występującego lokalnie na Pogórzu Wielickim oraz określenie przestrzennego zróżnicowania gleb na badanych stokach. Wyniki wykazały, że przekroczenie progu bielicowania jest związane przede wszystkim z występowaniem materiału macierzystego o piaszczystym uziarnieniu i o niskiej zawartości frakcji iłowej oraz o niskiej zawartości żelaza. Ponadto, różnice w tempie rozkładu materii organicznej również mogą mieć wpływ na zainicjowanie w glebach procesu bielicowania. Gleby w badanym transekcie stokowym wykazały wzrost zawartości frakcji iłowej i pedogenicznych półtoratlenków żelaza i glinu w ujęciu katenalnym. Formowanie się akumulacyjnych gleb w niższych położeniach stokowych może być związane z wyższym pH materiału macierzystego, który wpływa na strącanie składników gleby z roztworu przemieszczającego się śródpokrywowo wzdłuż stoku. Ponadto skutki bocznego przepływu roztworów ograniczają obszar występowania intensywnego bielicowania. Dlatego też uwzględnienie efektów bocznego bielicowania ma kluczowe znaczenie dla prawidłowego określenia warunków siedliskowych lasu, oceny potencjału sekwestracji węgla organicznego, a także w kartografii gleb.
REFERENCJE (59)
1.
Adamczyk, B., Niemyska-Łukaszuk, J., Drożdż-Hara, M., 1989. The part of soil in ensuring the purity of water in the dam reservoir in Dobczyce. Part I. Typology of soils and their all-over characteristic in watersheads of Ratanica and Dębnik. Acta Agraria et Silvestria – Series Silvestris 28, 125–146. (in Polish with English abstract).
 
2.
Augusto, L., Bonnaud, P., Ranger, J., 1998. Impact of tree species on forest soil acidification. Forest Ecology and Management 105, 67–78. https://doi.org/10.1016/S0378-....
 
3.
Bourgault, R.R., Ross, D.S., Bailey, S.W., 2015. Chemical and morphological distinctions between vertical and lateral podzolization at Hubbard Brook. Soil Science Society of America Journal 79(2), 428–439. https://doi.org/10.2136/sssaj2....
 
4.
Bourgault, R.R., Ross, D.S., Bailey, S.W., Bullen, T.D., McGuire, K.J., Gannon, J.P., 2017. Redistribution of soil metals and organic carbon via lateral flowpaths at the catchment scale in a glaciated upland setting. Geoderma 307, 238–252. https://doi.org/10.1016/j.geod....
 
5.
Brock, O., Kalbitz, K., Absalah, S., Jansen, B., 2020. Effects of development stage on organic matter transformation in Podzols. Geoderma 378, 114625. https://doi.org/10.1016/j.geod....
 
6.
Burt R., 2004. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42. Lincoln, NE, USA: USDA-NRCS.
 
7.
Burtan, J., Wójcik, A., 2017. Objaśnienia do szczegółowej mapy geologicznej Polski 1:50 000. 997, Arkusz Wieliczka. Państwowy Instytut Geologiczny, Warszawa.
 
8.
Buurman, P., 1984. Podzols. Van-Nostand Reinhold Soil Science Series, New York.
 
9.
Chadwick, O.A., Brimhall, G.H., Hendricks, D.M., 1990. From a black to a grey box — a mass balance interpretation of pedogenensis. Geomorphology 3, 369–390. https://doi.org/10.1016/0169-5....
 
10.
D’Amico, M., Jilitta, F., Previtali, F., Cantelli, D., 2008. Podzolization over ophiolitic materials in the western Alps (Natural Park of Mont Avic, Aosta Valley, Italy). Geoderma 146, 129–137. https://doi.org/10.1016/j.geod....
 
11.
Duchaufour, P., Souchier, B., 1978. Roles of iron and clay in genesis of acid soils under a humid, temperate climate. Geoderma 20, 15–26. https://doi.org/10.1016/0016-7....
 
12.
Dzięciołowski, W., 1976. Proces bielicowania w świetle analizy stosunków morfologicznych sekwencji gleb w rezerwacie Bielice Gackie. Proces bielicowania. Materiały 2 Krajowej Konferencji, 1976 May 4–5. Polish Society of Soil Science, Toruń, Poland, 59–74. (in Polish).
 
13.
Egli, M., Sartori, G., Mirabella, A., Giaccai, D., 2010. The effects of exposure and climate on the weathering of late Pleistocene and Holocene Alpine soils. Geomorphology 114, 466–482. https://doi.org/10.1016/j.geom....
 
14.
Gee, G.W., Bauder, J.W., 1986. Particle-Size Analysis. [In:] Klute, A. (Ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. ASA-SSSA, Madison, Wisconsin, 427–445.
 
15.
Glazovskaya, M.A., 1968. Geochemical landscapes and types of geochemical soil sequences. Transactions 9th International Congress of Soil Science 1968, August 6–16, Adelaide, Australia, 303–312.
 
16.
Gruba, P., 2001. The distribution of iron-humic complexes in brown soils formed of sandstones in Beskidy Mountains (southern Poland). Roczniki Gleboznawcze – Soil Science Annual 52, Suppl. 153–157. (in Polish with English abstract).
 
17.
Gustafsson, J.P., Battacharya, P., Bain, D.C., Fraser, A.R., McHardy, W.J., 1995. Podzolisation mechanisms and the synthesis of imogolite in northern Scandinavia. Geoderma 66, 167–184. https://doi.org/10.1016/0016-7....
 
18.
Hess, M., 1965. Altitudinal climatic zones in the Polish Western Carpathians. Zeszyty Naukowe UJ: Prace Geograficzne 11. (in Polish).
 
19.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, 106, FAO, Rome.
 
20.
Jahn, R., Blume, H.-P., Asio, V.B., Spaargaren, O., Schad, P., 2006. Guidelines for soil description, 4th ed. FAO, Rome, Italy.
 
21.
Jankowski, M., 2001. Conditions of occurrence, properties and genesis of intra-dune iron enriched soils. Roczniki Gleboznawcze – Soil Science Annual 52, Suppl. 49–63. (in Polish with English abstract).
 
22.
Jankowski, M., 2014. The evidence of lateral podzolization in sandy soils of Northern Poland. Catena 112, 139–147. https://doi.org/10.1016/j.cate....
 
23.
Jersak, J., Amundson, R., Brimhall Jr., G., 1995. A mass balance analysis of podzolization: Examples from northeastern United States. Geoderma 66, 15–42. https://doi.org/10.1016/0016-7....
 
24.
Kabała, C., et al., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations, Soil Science Annual 70(2), 71–97, https://doi.org/10.2478/ssa-20....
 
25.
Kalbitz, K., Schwesig, D., Rethemeyer, J., Matzner, E., 2005. Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biology and Biochemistry 37, 1319–1331. https://doi.org/10.1016/j.soil....
 
26.
Karavayeva, N.A., 1968. Formation and evolution of cemented Ortstein horizons (iron pans) in the Taiga zone. Transactions 9th International Congress of Soil Science, 1968, August 6–16, Adelaide, Australia, 451–458.
 
27.
Lasota, J., 2004a. Soils of forest site types in Żywiec region. Part I. Forest sites at low elevations of the lower montane zone. Sylwan 2, 3–10. (in Polish with English abstract).
 
28.
Lasota, J., 2004b. Soils of forest site types in Żywiec region. Part II. Forest sites at high elevations of the lower montane zone. Sylwan 3, 14–20. (in Polish with English abstract).
 
29.
Lucas, Y., Chauvel, A., 1992. Soil formation in tropically weathered terrains. [In:] Butt, C.R.M., Zeegers, H. (Eds.), Handbook of exploration geochemistry— in tropical and subtropical terrains. Elsevier, Amsterdam, 57–77.
 
30.
Lundström, U.S., van Breemen, N., Bain, D., 2000a. The podzolization process. A review. Geoderma 94, 91–107. https://doi.org/10.1016/S0016-....
 
31.
Migoń, P., Kacprzak, A., 2014. Lateral diversity of regolith and soils under a mountain slope — implications for interpretation of hillslope materials and processes, Central Sudetes, SW Poland. Geomorphology 221, 69–82. https://doi.org/10.1016/j.geom....
 
32.
Mokma, D.L., Buurman, P., 1982. Podzols and podzolization in temperate regions. ISM Monograph 1. International Soil Museum, Wageningen, The Netherlands.
 
33.
Musielok, Ł., Drewnik, M., Szymański, W., Stolarczyk, M., Gus-Stolarczyk, M., Skiba, M., 2021. Conditions favoring local podzolization in soils developed from flysch regolith – A case study from the Bieszczady Mountains in southeastern Poland. Geoderma 381, 114667. https://doi.org/10.1016/j.geod....
 
34.
Obrębska-Starklowa, B., Hess, M., Olecki, Z., Trepińska, J., Kowanetz, L., 1995. Climate. [In:] Warszyńska, J. (Ed.), The Polish Carpathians — Environment, human, and his activity, Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, 31–47 (in Polish).
 
35.
Systematyka gleb Polski, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław–Warszawa.
 
36.
Protz, R., Ross, G.J., Martini, I.P., Terasmae, J., 1984. Rate of Podzolic soil formation near Hudson Bay, Ontario. Canadian Journal of Soil Science 64, 31–49. https://doi.org/10.4141/cjss84....
 
37.
Sauer, D., Sponagel, H., Sommer, M., Giani, L., Jahn, R., Stahr, K., 2007. Podzol: Soil of the Year 2007. A review on its genesis, occurrence, and functions. Journal of Plant Nutrition and Soil Science 170, 581–597. https://doi.org/10.1002/jpln.2....
 
38.
Schaetzl, R.J., 1991a. A lithosequence of soils in extremely gravelly, dolomitic parent materials, Bois Blanc Island, Lake Huron. Geoderma 48, 305–320. https://doi.org/10.1016/0016-7....
 
39.
Schaetzl, R.J., Rothstein, D.E., 2016. Temporal variation in the strength of podzolization as indicated by lysimeter data. Geoderma 282, 26–36. https://doi.org/10.1016/j.geod....
 
40.
Schlichting, E., 1963. Interpretation of “Ortstein” soils in a subarctic-alpine region (in German). Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 100, 121–126.
 
41.
Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 105, 194–202. https://doi.org/10.1002/jpln.3....
 
42.
Seibert, J., Stendahl, J., Sørensen, R., 2007. Topographical influences on soil properties in boreal forests. Geoderma 141, 139–148. https://doi.org/10.1016/j.geod....
 
43.
Skiba, S., 1995. Soil cover. [In:] Warszyńska, J. (Ed The Polish Carpathians — Environment, human, and his activity. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, 69–76. (in Polish).
 
44.
Skiba, S., Drewnik, M., Klimek, M., Szmuc, R., 1998. Soil cover in the marginal zone of the Carpathian Foothills between the Raba and Uszwica Rivers. Prace Geograficzne 103, 125–135.
 
45.
Skiba S., Drewnik M., 2003. Soil Map of the Polish Carpathian Mountains. Roczniki Bieszczadzkie 11, 15–20. (in Polish with English abstract).
 
46.
Sommer, M., Thies, H., Kolb, E., Bachle, H., Stahr, K., 1997. Bio-geochemistry of a cirque-lake landscape—An interdisciplinary study in a catchment of the northern Black Forest, Germany. Water Resources Research 33, 2129–2142. https://doi.org/10.1029/97WR01....
 
47.
Sommer, M., Halm, D., Weller, U., Zarei, M., Stahr, K., 2000. Lateral podzolization in a granite landscape. Soil Science Society of America Journal 64, 1434–1442. https://doi.org/10.2136/sssaj2....
 
48.
Sommer, M., Halm, D., Geisinger, C., Andruschkewitsch, I., Zarei, M., Stahr, K., 2001. Lateral podzolization in a sandstone catchment. Geoderma 103, 231–247. https://doi.org/10.1016/S0016-....
 
49.
Stützer, A., 1998. Early stages of podzolisation in young aeolian sediments, western Jutland. Catena 32, 115–129. https://doi.org/10.1016/S0341-....
 
50.
Szymański, W., Skiba, M., Skiba, S., 2011. Fragipan horizon degradation and bleached tongues formation in Albeluvisols of the Carpathian Foothills, Poland. Geoderma 167–168, 340–350. https://doi.org/10.1016/j.geod....
 
51.
Ślączka, A., Kruglow, S., Golonka, J., Oszczypko, N., Popadyuk, I., 2006. The General Geology of the Outer Carpathians, Poland, Slovakia, and Ukraine. [In:] Golonka, J., Picha, F., (Eds.), The Carpathians and their foreland: Geology and hydrocarbon resources, AAPG Memoir 84, 221 – 258.
 
52.
Towpasz, K., Zemanek, B., 1995. Vegetation. [In:] Warszyńska, J. (Ed.), The Polish Carpathians — Environment, human, and his activity. Wydawnictwo Uniwersytetu Jagiellońskiego, Kraków, 77–94. (in Polish).
 
53.
Uziak, S., 1962. Typology of some silty soils of the Carpathian Foothills. Annales UMCS, Sec. B., XXX, 1–60. (in Polish).
 
54.
Van Reeuwijk, L.P., 2002. Procedures for Soil Analysis. International Soil Reference and Information Centre Technical Paper 9. Wageningen.
 
55.
Waroszewski, J., Egli, M., Kabała, C., Kierczak, J., Brandova, D., 2016. Mass fluxes and clay mineral formation in soils developed on slope deposits of the Kowarski Grzbiet (Karkonosze Mountains, Czech Republic/Poland). Geoderma 264, 363–378. https://doi.org/10.1016/j.geod....
 
56.
Wypych, A., Ustrnul, Z., Schmatz, D.R., 2018. Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. Journal of Mountain Science 15, 237–253, https://doi.org 10.1007/s11629-017-4374-3.
 
57.
Zasoński, S., 1981. Chief soil-forming processes on very fine sand rocks of the Wieliczka Foothills. Part I. General description of soils and some of their chemical properties. Roczniki Gleboznawcze – Soil Science Annual 32(2), 115–143. (in Polish with English abstract).
 
58.
Zasoński, S., 1983. Main soil-forming processes in silty deposits of the Wielickie Foothills. Part II. Micromorphological properties. Roczniki Gleboznawcze – Soil Science Annual 34(4), 123–159. (in Polish with English abstract).
 
59.
Zasoński, S., Skiba, S., 1988. Chemical and micromorphological properties of calcareous soils in the environs of Cieszyn. Roczniki Gleboznawcze – Soil Science Annual 39(3), 71–90. (in Polish with English abstract).
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top