ORIGINAL PAPER
Nutrient distribution in silver birch (Betula pendula Roth) biomass growing on post-arable soils
More details
Hide details
1
Institute of Agriculture, Department of Soil Science, Warsaw University of Life Sciences - SGGW, Polska
Submission date: 2024-06-13
Final revision date: 2024-09-24
Acceptance date: 2024-11-13
Online publication date: 2024-11-13
Publication date: 2024-11-22
Corresponding author
Beata Rustowska
Institute of Agriculture, Department of Soil Science, Warsaw University of Life Sciences - SGGW, Nowoursynowska Str. 159, 02-776, Warsaw, Polska
Soil Sci. Ann., 2024, 75(3)195922
KEYWORDS
ABSTRACT
The afforestation of former farmland is a common practice on poor-quality soils when traditional production is no longer profitable. To at least maintain, and preferably improve the health and quality of the soil, it is crucial to understand the effects of various tree species on the soil environment. Tracking nutrients, including their contents, bioavailability, bioaccumulation in the biomass, and return to the soil via litterfall is important in this regard. Although silver birch (Betula pendula Roth) is often implemented in afforestation, knowledge concerning its ecology is still insufficient, including the nutrient aspects. Hence, we undertook a broad study to determine the bioaccumulation of major nutrients (N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn) in the biomass of silver birch trees growing on post-arable soils, representing various trophic states and degrees of deformation, under temperate climatic conditions. The study covered four stands representing varied soil textures (loamy and sandy) and ages (10 and 35 years). Samples of soil (from depths of 0–10, 10–20, 20–40, and 40–80 cm) and biomass (fine roots, coarse roots, stemwood, bark, coarse branches, fine branches, and leaves) were collected and analyzed using standard procedures. The soils were acidic and moderately abundant in total organic carbon and N, but generally poor in the remaining elements. The elemental contents strongly varied among the birch organs, commonly reaching their highest values in the leaves, followed by the roots (N, P, K, Mg, S), bark (Mn, Cu), and branches (Ca). Iron occurred in its highest amounts in the fine roots, Zn in the bark. Among the macronutrients, the highest bioaccumulation intensity was recorded for N, followed by S, P, and Ca, while the highest intensity among the micronutrients was for Zn. Statistically significant differences were noted in several cases between the stands, in terms of individual biomass fractions and their elemental contents and bioaccumulation factors. Our results highlight the influence of soil properties and the post-arable nature of the stand on the nutrient accumulation in silver birch biomass. We found that silver birch growing on former arable soils shows an increased accumulation of some nutrients, particularly P and S. Moreover, the strong bioaccumulation of Zn and Mn by this species was confirmed.
REFERENCES (75)
1.
Alifragis, D., Smiris, P., Maris, F., Kavvadias, V., Konstantinidou, E., Stamou, N., 2001. The effect of stand age on the accumulation of nutrients in the aboveground components of an Aleppo pine ecosystem. Forest Ecology and Management 141(3), 259–269.
https://doi.org/10.1016/s0378-....
2.
Aosaar, J, Mander, Ü., Varik, M., Becker, H., Morozov, G., Maddison, M., Uri, V., 2016. Biomass production and nitrogen balance of naturally afforested silver birch (Betula pendula Roth.) stand in Estonia. Silva Fennica 50(4), 1–19.
http://dx.doi.org/10.14214/sf.....
3.
Augusto, L., Ranger, J., Binkley, D., Rothe, A., 2002. Impact of several common tree species of European temperate forests on soil fertility. Annals of Forest Science 59, 233–253.
https://doi.org/10.1051/forest....
4.
Bednář, M., Šarapatka, B., 2018. Relationships between physical–geographical factors and soil degradation on agricultural land. Environmental Research 164, 660–668.
https://doi.org/10.1016/j.envr....
5.
Berg, B., Staaf, H., 1987. Release of nutrients from decomposing white birch and Scots pine needle litter. Pedobiologia 30(1), 55–63.
6.
Bezerra, J.S., Arroyo-Rodríguez, V., Dupuy-Rada, J.M., Leal, I.R., Tabarelli, M., 2023. Negative impact of slash-and-burn agriculture on the seed rain in a tropical dry forest. Forest Ecology and Management 531, 120821.
https://doi.org/10.1016/j.fore....
7.
Borrelli, P., Lugato, E., Montanarella, L., Panagos, P., 2017. A new assessment of soil loss due to wind erosion in European agricultural soils using a quantitative spatially distributed modelling approach. Land Degradation and Development 28(1), 335–344.
https://doi.org/10.1002/ldr.25....
8.
Brandtberg, P.O., Bengtsson, J., Lundkvist, H., 2004. Distributions of the capacity to take up nutrients by Betula spp. and Picea abies in mixed stands. Forest Ecology and Management 198, 193–208.
https://doi.org/10.1016/j.fore....
9.
Chahal, I., Hooker, D.C., Deen, B., Janovicek, K., Van Eerd, L.L., 2021. Long-term effects of crop rotation, tillage, and fertilizer nitrogen on soil health indicators and crop productivity in a temperate climate. Soil and Tillage Research 213, 105121.
https://doi.org/10.1016/j.stil....
10.
Chojnacka, A., Jonczak, J., Oktaba, L., Pawłowicz, E., Regulska, E., Słowińska, S., Olejniczak, I., Oktaba, J., Kruczkowska, B., Jankiewicz, U., 2023. Dynamics of fungal community structure in silver birch (Betula pendula Roth) succession chronosequence on poor-quality post-arable soil. Agriculture, Ecosystems and Environment 342, 108225.
https://doi.org/10.1016/j.agee....
11.
Chrabąszcz, M., Mróz, L., 2017. Tree bark, a valuable source of information on air quality. Polish Journal of Environmental Studies 26(2), 453–466.
https://doi.org/10.15244/pjoes....
12.
Daugaviete, M., Korica, A.M., Silins, I., Barsevskis, A., Bardulis, A., Bardule, A., Spalvis, K., Daugavietis, M., 2015. The use of mineral nutrients for biomass production by young birch stands and stands vitality in different forest growing conditions. Journal of Environmental Engineering and Science B4, 177–189.
https://doi.org/10.17265/2162-....
13.
Daugaviete, M., Krŭmina, M., Kǎpopstos, V., Lazdinš, A., 2003. Farmland afforestation: the plantations of birch Betula pendula Roth. on different soils. Baltic Forestry 9(1), 9–21.
14.
Desai, M., Haigh, M., Walkington, H., 2019. Phytoremediation: Metal decontamination of soils after the sequential forestation of former opencast coal land. Science of The Total Environment., 656, 670–680.
https://doi.org/10.1016/j.scit....
15.
Dmuchowski, W., Gozdowski, D., Brągoszewska, P., Baczewska, A.H., Suwara, I., 2014. Phytoremediation of zinc contaminated soils using silver birch (Betula pendula Roth). Ecological Engineering 71, 32–35.
https://doi.org/10.1016/j.ecol....
16.
Falkengren-Grerup, U., Brink, D.-J., Brunet, J., 2006. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. Forest Ecology and Management 225(1–3), 74–81.
https://doi.org/10.1016/j.fore....
18.
Gallagher, F.J., Pechmann, I., Bogden, J.D., Grabosky, J., Weis, P., 2008. Soil metal concentrations and vegetative assemblage structure in an urban brownfield. Environmental Pollution 153, 351–361.
https://doi.org/10.1016/j.envp....
19.
Gawęda, T., Małek, S., Zasada, M., Jagodziński, A., 2014. Allocation of elements in a chronosequence of silver birch afforested on former agricultural lands. Drewno 57, 107–117.
https://doi.org/10.12841/wood.....
20.
Gębski, M., 1998. Czynniki glebowe oraz nawozowe wpływające na przyswajalność metali ciężkich przez rośliny. Postępy Nauk Rolniczych 5, 3–16.
22.
Gupta, N., Yadav, K.K., Vinit, K., Kumar, S., Chadd, R.P., Kumar, A., 2019. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration - a review. Science of The Total Environment 651, 2927–2942.
https://doi.org/10.1016/j.scit....
23.
Hagen-Thorn, A., Varnagiryte, I., Nihlgård, B., Armolaitis, K., 2006. Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management 228, 33–39.
https://doi.org/10.1016/j.fore....
24.
Hellsten, S., Helmisaari, H-S., Melin, Y., Skovsgaard, J.P., Kaakinen, S., Kukkola, M., Akselsson, C., 2013. Nutrient concentrations in stumps and coarse roots of Norway spruce, Scots pine and silver birch in Sweden, Finland and Denmark. Forest Ecology and Management 290, 40–48.
https://doi.org/10.1016/j.fore....
25.
Hunt, H.W., Reuss, D.E., Elliott, E.T., 1999. Correcting estimates of root chemical composition for soil contamination. Ecology 80(2), 702–707.
https://doi.org/10.2307/176645.
26.
Huttunen, L., Aphalo, P.J., Lehto, T., Niemela, P., Kuokkanen, K., Kelloma, S., 2009. Effects of elevated temperature, elevated CO2 and fertilization on quality and subsequent decomposition of silver birch leaf litter. Soil Biology and Biochemistry 41, 2414–2421.
https://doi.org/10.1016/j.soil....
27.
Hynynen, J., Niemisto, P., Vihera-Aarnio, A., Brunner, A., Hein, S., Velling, P., 2010. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83(1), 103–119.
https://doi.org/10.1093/forest....
28.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
29.
Jagodziński, A.M., Zasada, M., Bronisz, K., Bronisz, A., Bijak, S., 2017. Biomass conversion and expansion factors for a chronosequence of young naturally regenerated silver birch (Betula pendula Roth) stands growing on post-agricultural sites. Forest Ecology and Management 384, 208–220.
https://doi.org/10.1016/j.fore....
30.
Johansson, M.B., 1995. The chemical composition of needle and leaf litter from Scots pine, Norway spruce and white birch in Scandinavian forests. Forestry 68, 49–62.
https://doi.org/10.1093/forest....
31.
Jonczak, J., Parzych, A., 2018. Bioaccumulation of macronutrients in herbaceous plants of the Sławno glaciolacustrine plain, northern Poland. Acta fytotechnica et zootechnica 21(2), 44–51.
https://doi.org/10.15414/afz.2....
32.
Jonczak, J., Jankiewicz, U., Kondras, M., Kruczkowska, B., Oktaba, L., Oktaba, J., Olejniczak, I., Pawłowicz, E., Polláková, N., Raab, T., Regulska, E., Słowińska, S., Sut-Lohmann, M., 2020. The influence of birch trees (Betula spp.) on soil environment – A review. Forest Ecology and Management 477, 118486.
https://doi.org/10.1016/j.fore....
33.
Jonczak, J., Sut-Lohmann, M., Polláková, N., Parzych, A., Šimanský, V., Donovan, S., 2021. Bioaccumulation of potentially toxic elements by the needles of eleven pine species in low polluted area. Water, Air, and Soil Pollution 232(1).
https://doi.org/10.1007/s11270....
34.
Jonczak, J., Oktaba, L., Chojnacka, A., Pawłowicz, E., Kruczkowska, B., Oktaba, J., Słowińska, S., 2023a. Nutrient fluxes via litterfall in silver birch (Betula pendula Roth) stands growing on post-arable soils. European Journal of Forest Research 142, 981–996.
https://doi.org/10.1007/s10342....
35.
Jonczak, J., Oktaba, L., Pawłowicz, E., Chojnacka, A., Regulska, E., Słowińska, S., Olejniczak, I., Oktaba, J., Kruczkowska, B., Kondras, M., Jankiewicz, U., Wójcik-Gront, E., 2023b. Soil organic matter transformation influenced by silver birch (Betula pendula Roth) succession on abandoned from agricultural production sandy soil. European Journal of Forest Research 142, 367–379.
https://doi.org/10.1007/s10342....
36.
Kaczorowska, Z., 1962. Opady w Polsce w przekroju wieloletnim. Przegląd Geograficzny IG PAN., Nr 33. ss. 112. (in Polish).
37.
Kaiser, M., Ellerbrock, R.H., Gerke, H.H., 2007. Long-term effects of crop rotation and fertilization on soil organic matter composition. European Journal of Soil Science 58(6), 1460-1470.
https://doi.org/10.1111/j.1365....
38.
Kosiorek, M., Modrzewska, B., Wyszkowski, M., 2016. Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment. Environmental Monitoring and Assessment 188, 598.
http://dx.doi.org/10.1007/s106....
39.
Krawczyk, R., 2014. Afforestation and secondary succession. Forest Research Papers 75(4), 423–427.
40.
Kříbek, B., Míková, J., Knésl, I., Mihaljevič, M., Sýkorová, I., 2020. Uptake of trace elements and isotope fractionation of Cu and Zn by birch (Betula pendula) growing on mineralized coal waste pile. Applied Geochemistry 122, 104741.
https://doi.org/10.1016/j.apge....
41.
Łaska, G., 2014. Ecological consequences of deforestation and afforestation on a post-arable land: Changes in the composition and structure of plant communities and transformations of oak-hornbeam habitats and soil. Ecological Questions 20, 9–21.
http://dx.doi.org/10.12775/EQ.....
42.
Le Bissonnais, Y., Arrouays, D., 1997. Aggregate stability and assessment of soil crustability and erodability. II. Application to humic loamy soils with various organic carbon contents. European Journal of Soil Science 48, 39–48.
43.
Mather, A.S., Needle, C.L., 2000. The relationships of population and forest trends. The Geographical Journal 166(1), 2–13.
44.
Miętus, M., Owczarek, M., Filipiak, J., 2002. Warunki termiczne na obszarze Wybrzeża i Pomorza w świetle wybranych klasyfikacji. Materiały Badawcze IMGW, seria Meteorologia, 36, ss. 56. (in Polish).
45.
Miller, H.G., 1984. Nutrient cycles in birch woods. Proc Roy Soc Edinb, 853, 83-96.
46.
Murty, D., Kirschbaum, M.U.F., Mcmurtrie, R.E., Mcgilvray, H., 2002. Does conversion of forest to agricultural land change soil carbon and nitrogen? a review of the literature. Global Change Biology 8(2), 105–123.
https://doi.org/10.1046/j.1354....
47.
Novák, J., Dušek, D., Kacálek, D., Slodičák, M., 2017. Nutrient content in silver birch biomass on nutrient-poor, gleyic sites. Zprávy Lesnického Výzkumu 62(3), 135–141.
48.
Oksanen, E., Riikonen, J., Kaakinen, S., Holopainen, T., Vapaavuori, E., 2005. Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Global Change Biology 11, 732–748.
https://doi.org/10.1111/j.1365....
49.
Oksanen, E., 2021. Birch as a model species for the acclimation and adaptation of northern forest ecosystem to changing environment. Frontiers in Forests and Global Change 4, 682512.
https://doi.org/10.3389/ffgc.2....
50.
Oniawa, P.C., Babajide, A.O., 1993. Sulphate-sulphur levels of topsoils related to atmospheric dioxide pollution. Environmental Monitoring and Assessment 25, 141–148.
https://doi.org/10.1007/BF0054....
51.
Ovington, J.D., Madgwick, H.A.I., 1959. The growth and composition of natural stands of birch. 2. The uptake of mineral nutrients. Plant and Soil 10, 389–400.
https://doi.org/10.1007/BF0166....
52.
Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen–Geiger climate classification. Hydrology and Earth System Sciences 11, 1633–1644.
https://doi.org/10.1127/0941-2....
53.
Possen, B.J.H.M., Rousi, M., Keski-Saari, S., Silfver, T., Kontunen-Soppela, S., Oksanen, E., Mikola, J., 2021. New evidence for the importance of soil nitrogen on the survival and adaptation of silver birch to climate warming. Ecosphere 12(5), e03520.
https://doi.org/10.1002/ecs2.3....
54.
Prăvălie, R., Patriche, C., Borrelli, P., Panagos, P., Roșca, B., Dumitraşcu, M., Nita, I-A., Săvulescu, I., Birsan, M-V., Bandoc, G., 2021. Arable lands under the pressure of multiple land degradation processes. A global perspective. Environmental Research 194, 110697.
https://doi.org/10.1016/j.envr....
55.
Rodríguez-Soalleiro, R., Eimil-Fraga, C., Gómez-García, E., García-Villabrille, J.D., Rojo-Alboreca, A., Muñoz, F., Oliveira, N., Sixto, H., Pérez-Cruzado, C., 2018. Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry. Forest Ecosystems 5, 35.
https://doi.org/10.1186/s40663....
56.
Rosenvald, K., Ostonen, I., Uri, V., Varik, M., Tedersoo, L., Lõhmus, K., 2013. Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence. European Journal of Forest Research 32, 219–230.
https://doi.org/10.1007/s10342....
57.
Rustowska, B., 2022. Long-term wildfire effect on nutrient distribution in silver birch (Betula pendula Roth) biomass. Soil Science Annual 73, 149943.
https://doi.org/10.37501/soils....
58.
Shukla, A.K., Behera, S.K., Prakash, C., Tripathi, A., Patra, A.K., Dwivedi, B.S., Trivedi, V., Rao, Ch.S., Chaudhari, S.K., Das, S., Singh, A.K., 2021. Deficiency of phyto-available sulphur, zinc, boron, iron, copper and manganese in soils of India. Scientific Reports 11, 19760.
https://doi.org/10.1038/s41598....
59.
Silver, W., Neff, J., McGroddy, M., Veldkamp, E., Keller, M., Cosme, R., 2000. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem. Ecosystems 3, 193–209.
https://doi.org/10.1007/s10021....
60.
Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, Ł., Stępień, W., 2019. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 342, 75–84.
61.
Sitko, K., Opała-Owczarek, M., Jemioła, G., Gieroń, Z., Szopiński, M., Owczarek, P., Rudnicka, M., Małkowski, E., 2022. Effect of drought and heavy metal contamination on growth and photosynthesis of silver birch trees growing on post-industrial heaps. Cells 11, 53.
https://doi.org/10.3390/cells1....
62.
Skwierawska, M., Benedycka, Z., Jankowski, K., Skwierawski, A., 2016. Sulphur as a fertiliser component determining crop yield and quality. Journal of Elementology 21(2), 609–623.
https://doi.org/10.5601/jelem.....
63.
Sławski, M., Tarabuła, T., Sławska, M., 2020. Does the enrichment of post-arable soil with organic matter stimulate forest ecosystem restoration—A view from the perspective of three decades after the afforestation of farmland. Forest Ecology and Management 478, 118525.
https://doi.org/10.1016/j.fore....
64.
Soil Survey Division Staff, 1993. Soil Survey Manual. Soil Conservation Service. U.S, Department of Agriculture Handbook, p. 18.
65.
Špulák, O., Souček, J., Bartoš, J., Kacálek, D., 2010. Potential of young stands with birch dominance established by succession on abandoned agricultural land. Forest Research Reports 55(3), 165–170.
66.
Sutinen, R., Teirilä, A., Pänttäjä, M., Sutinen, M.-L., 2002. Distribution and diversity of tree species withrespect to soil electrical characteristics in Finnish Lapland. Canadian Journal of Forest Research 32, 1158–1170.
67.
Szwalec, A., Lasota, A., Kędzior, R., Mundała, P., 2018. Variation in heavy metal content in plants growing on a zinc and lead tailings dump. Applied Ecology and Environmental Research 16(4), 5081–5094.
https://doi.org/10.15666/aeer/....
68.
Tabatabai, M.A., Bremner, J.M., 1972. Distribution of total and available sulfur in selected soils and soil profiles. Agronomy Journal 64(1), 40–44.
https://doi.org/10.2134/agronj....
69.
Takarina, N.D., Pin, T.G., 2017. Bioconcentration Factor (BCF) and Translocation Factor (TF) of Heavy Metals in Mangrove Trees of Blanakan Fish Farm. Makara Journal of Science 21(2).
https://doi.org/10.7454/mss.v2....
70.
Tinker, P.B., Ingram, J.S.I., Struwe, S., 1996. Effects of slash-and-burn agriculture and deforestation on climate change. Agriculture, Ecosystems and Environment 58(1), 13–22.
https://doi.org/10.1016/0167-8....
71.
Tolimir, M., Kresović, B., Životić, L., Dragović, S., Dragović, R., Sredojević, Z., Gajić, B., 2020. The conversion of forestland into agricultural land without appropriate measures to conserve SOM leads to the degradation of physical and rheological soil properties. Scientific Reports 10, 13668.
https://doi.org/10.1038/s41598....
72.
Tripathi, S.K., Sumida, A., Shibata, H., Ono, K., Uemura, S., Kodama, Y., Hara, T., 2006. Leaf litterfall and decomposition of different above- and belowground parts of birch (Betula ermanii) trees and dwarf bamboo (Sasa kurilensis) shrubs in a young secondary forest in Northern Japan. Biology and Fertility of Soils 43, 237–246.
https://doi.org/10.1007/s00374....
73.
Tuszyński, M., 1990. Properties of post-agricultural soils and forest economy. Sylwan 134, 41–49.
74.
Uri, V., Varik, M., Aosaar, J., Kanal, A., Kukumägi, M., Lõhmus, K., 2012. Biomass production and carbon sequestration in a fertile silver birch forest chronosequence. Forest Ecology and Management 267, 112–126.
https://doi.org/10.1016/j.fore....
75.
Yan, Q., Fang, H., Wang, D., Xiao, X., Deng, T., Li, X., Wei, F., Liu, J., Lin, C., 2023. Transfer and transformation characteristics of Zn and Cd in soil-rotation plant (Brassica napus L and Oryza sativa L) system and its influencing factors. Scientific Reports 13, 7393.
https://doi.org/10.1038/s41598....