PL EN
PRACA ORYGINALNA
Morfologia, właściwości i klasyfikacja gleb ściółkowych Tatr
 
Więcej
Ukryj
1
Wydział Geografii i Geologii, Instytut Geografii i Gospodarki Przestrzennej, Pracownia Gleboznawstwa i Geografii Gleb, Uniwersytet Jagielloński w Krakowie, Polska
 
 
Data nadesłania: 23-07-2024
 
 
Data ostatniej rewizji: 03-10-2024
 
 
Data akceptacji: 25-10-2024
 
 
Data publikacji online: 25-10-2024
 
 
Data publikacji: 13-11-2024
 
 
Autor do korespondencji
Marek Drewnik   

Wydział Geografii i Geologii, Instytut Geografii i Gospodarki Przestrzennej, Pracownia Gleboznawstwa i Geografii Gleb, Uniwersytet Jagielloński w Krakowie, ul. Gronostajowa 7, 30-387, Kraków, Polska
 
 
Soil Sci. Ann., 2024, 75(4)195239
 
SŁOWA KLUCZOWE
STRESZCZENIE
Celem pracy było przedstawienie zróżnicowania gleb ściółkowych (folisoli) występujących w polskiej części Tatr. Uwzględniono morfologię, podstawowe właściwości i klasyfikację tych gleb. Prezentowany materiał został zebrany w trakcie badań przeprowadzonych na leśnych powierzchniach monitoringowych (regularna sitaka punktów 500×500 m) na terenie Tatrzańskiego Parku Narodowego. W trakcie tych badań opisano 34 gleb ściółkowych na łącznie 668 badanych profili. Do niniejszej publikacji wybrano typowe profile gleb ściółkowych. Podstawowe właściwości gleb zostały oznaczone standardowymi metodami laboratoryjnymi. Badane gleby ściółkowe występowały na różnej wysokości n.p.m. i były porośnięte różną roślinnością (lasy świerkowe, zarośla kosodrzewiny, zbiorowiska naskalne, murawy). Występowanie tych gleb wiązało się z bardzo specyficznymi lokalizacjami, takimi jak: (1) wychodnie różnych typów skał o stosunkowo dużej odporności na wietrzenie – w takich miejscach utworzyły się gleby ściółkowe skaliste (Leptic Folic Mawic Histosols wg WRB 2022), oraz ( 2) rumosz skalny i pokrywy stokowe składające się z dużych okruchów skał (kamienie, bloki, głazy) – w takich miejscach utworzyły się głównie gleby ściółkowe rumoszowe (Skeletic Folic Mawic Histosols wg WRB 2022). Właściwości badanych gleb ściółkowych zależały przede wszystkim od podłoża skalnego. Roślinność wpływała na morfologię tych gleb, ale nie miała istotnego wpływu na ich właściwości. Gleby ściółkowe były kwaśne, jednak występowanie nawet niewielkiej ilości fragmentów skał węglanowych (wapieni, dolomitów) powodowało ich alkalizację. Z tego powodu wprowadzenie podtypu „gleba ściółkowa rędzinowa” do systematyki gleb Polski jest uzasadnione.
 
REFERENCJE (44)
1.
Agriculture Canada Expert Committee on Soil Survey, 1987. The Canadian system of soil classification. 2nd ed. Agriculture Canadian Publication 1646, 164 pp.
 
2.
Błażejczyk, K., 2019. Seasonal and multiannual variability of selected elements of climate in the Tatra and Karkonosze Mts over the 1951–2015 period. Przegląd Geograficzny 91/1, 41-62. https://doi.org/10.7163/PrzG.2....
 
3.
Bojko, O., Kabala, C., 2017. Organic carbon pools in mountain soils – Sources of variability and predicted changes in relation to climate and land use changes. Catena 149, 209–220. https://doi.org/10.1016/j.cate....
 
4.
Burgess-Conforti, J.R., Moore, P.A.Jr., Owens, P.R., Miller, D.M., Ashworth, A.J., Hays, P.D., Evans-White, M.A., Anderson, K.R., 2019. Are soils beneath coniferous tree stands more acidic than soils beneath deciduous tree stands? Environmental Science and Pollution Research 26(15), 14920–14929. 1007/s11356-019-04883-y
 
5.
Chimner, R., Cooper, D., 2024. Mountain Peatland Restoration: Assessment, Goals, and Approaches. Michigan Technological University, Houghton, MI. https://doi.org/10.37099/mtu.d....
 
6.
Cotrufo, M.F., Ranalli, M.G., Haddix, M.L., Six, J., Lugato, E., 2019. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience 12(12), 989–994. https://doi.org/10.1038/s41561....
 
7.
Cotrufo, M.F., Lavallee, J.M., 2022. Soil organic matter formation, persistence, and functioning: A synthesis of current understanding to inform its conservation and regeneration. Advances in agronomy 172, 1–66. https://doi.org/10.1016/bs.agr....
 
8.
Drewnik, M., Walas, J., Stolarczyk, M., 2015. Ogólna charakterystyka i właściwości gleb torfowiska stokowego na północno-wschodnim skłonie Szerokiego Wierchu (Bieszczady Zachodnie). Roczniki Bieszczadzkie 23, 319–333. (in Polish with English abstract).
 
9.
Drewnik, M., Musielok, Ł., Stolarczyk, M., Szymański, W., Zięba, A., Zwijacz-Kozica, T., 2021. Zróżnicowanie gleb w obrębie leśnych powierzchni badawczych Tatrzańskiego Parku Narodowego (Tatry Zachodnie). Parki Narodowe i Rezerwaty Przyrody 40(2), 19–39.
 
10.
Drewnik, M., Musielok, Ł., Stolarczyk, M., Szymański, W., Struzik, D., Zięba, A., Zwijacz-Kozica, T., 2022. Zróżnicowanie gleb na leśnych powierzchniach badawczych Tatrzańskiego Parku Narodowego – część wschodnia. Parki Narodowe i Rezerwaty Przyrody 41(1), 31–47. (in Polish with English abstract).
 
11.
Drollinger, S., Knorr, K.H., Knierzinger, W., Glatzel, S., 2020. Peat decomposition proxies of Alpine bogs along a degradation gradient. Geoderma 369, 114331. https://doi.org/10.1016/j.geod....
 
12.
Glina, B., Piernik, A., Hulisz, P., Mendyk, Ł., Tomaszewska, K., Podlaska, M., Bogacz, A., Spychalski, W., 2019. Water or soil – what is the dominant driver controlling the vegetation pattern of degraded shallow mountain peatlands? Land Degradation and Development 30(12), 1437–1448. https://doi.org/10.1002/ldr.33....
 
13.
Hackman, K., Weltry-Bernard, A., Rasmussen, C., Schwartz, E., 2009. Geologic control of soil carbon cycling and microbial dynamics in temperate conifer forest, Chemical Geology 267, 12–23. https://doi.org/10.1016/j.chem....
 
14.
Hoffmann, U., Hoffmann, T., Jurasinski, G., Glatzel, S., Kuhn, N.J., 2014. Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps). Geoderma 232, 270–283. https://doi.org/10.1016/j.geod....
 
15.
Hribljan, J., Cooper, D., Sueltenfuss, J., Wolf, E.C., Heckman, K., Lilleskov, E., Chimner, R., 2015. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia. Mires and Peat 15, 1–14.
 
16.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
 
17.
Jach, R., Rychliński, T., Uchman, A., 2014. Skały osadowe Tatr. Wydawnictwo Tatrzańskiego Parku Narodowego, Zakopane, 278 pp.
 
18.
Jobbágy, E.G., Jackson, R.B., 2001. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 53, 51–77. https://doi.org/10.1023/A:1010....
 
19.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł., Waroszewski, J., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97.
 
20.
Kacprzak, A., Drewnik, M., Uzarowicz, Ł., 2006. Rozwój i kierunki przemian węglanowych gleb rumoszowych na terenie Pienińskiego Parku Narodowego. Pieniny – Przyroda i Człowiek 9, 41–50. (in Polish with English abstract).
 
21.
Klimaszewski, M., 1988. Rzeźba Tatr Polskich, PWN, 707 pp.
 
22.
Komornicki, T., Skiba, S., 1996. Gleby [In:] Mirek Z. (Ed.). Przyroda Tatrzańskiego Parku Narodowego, Wydawnictwo Tatrzańskiego Parku Narodowego, Zakopane, 215–228.
 
23.
Miechówka, A., 2000. Charakterystyka tatrzańskich gleb nieleśnych wytworzonych ze skał węglanowych. Zeszyty Naukowe AR w Krakowie 263, 1–87. (in Polish with English abstract).
 
24.
Miechówka, A., Drewnik, M., 2018. Rendzina soils in the Tatra Mountains, central Europe: a review. Soil Science Annual 69(2), 88–100. http://ssa.ptg.sggw.pl/artykul....
 
25.
Munsell Soil-Color Charts, 2018. Grand Rapis, Michigan.
 
26.
Musielok, Ł., Kacprzak, A., Opyrchał, J., 2013. Właściwości i pozycja systematyczna gleb wytworzonych na ryolitach w Górach Kamiennych. Prace Geograficzne 135, 21–39. (in Polish with English abstract).
 
27.
Musielok, Ł., Vancampenhout, K., Muys, B., Gus-Stolarczyk, M., Grabska-Szwagrzyk, E., Stolarczyk, M., Bartos, A., Gołąb, A., Buczek, K., 2024. Dynamic linkages between human pressure and stability of soil organic matter in mid-latitude mountains – A perspective review. Geoderma Regional 39, e00859. https://doi.org/10.1016/j.geod....
 
28.
Olleck, M., Reger, B., Ewald, J., 2020. Plant indicators for Folic Histosols in mountain forests of the Calcareous Alps. Applied Vegetation Science 23(2), 285–296. https://doi.org/10.1111/avsc.1....
 
29.
Piękoś-Mirkowa, H., Mirek, Z., 1996. Zbiorowiska roślinne. [In:] Mirek Z. (Ed.). Przyroda Tatrzańskiego Parku Narodowego, Wydawnictwo Tatrzańskiego Parku Narodowego, Zakopane, 237–274.
 
30.
Piotrowska, K., Danel, W., Iwanow, A., Gaździcka, E., Rączkowski, W., Bezák, V., Maglay, J., Polák, M., Kohút, M., Gross, P., 2015. Geology. [In:] Dąbrowska, K., Guzik, M. (Eds) Atlas of the Tatra Mts. TPN, Zakopane.
 
31.
Rahman, M.M., Tsukamoto, J., 2013. Leaf traits, litter decomposability and forest floor dynamics in an evergreen- and a deciduous-broadleaved forest in warm temperate Japan. Forestry 86(4), 441–451. https://doi.org/10.1093/forest....
 
32.
Rowley, M.C., Grand, S., Verrecchia, É.P., 2018. Calcium-mediated stabilization of soil organic carbon. Biogeochemistry 137(1–2), 27–49. https://doi.org/10.1007/s10533....
 
33.
Rowley, M.C., Grand, S., Adatte, T., Verrecchia, E.P., 2020. A cascading influence of calcium carbonate on the biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma 361, 114065. https://doi.org/10.1016/j.geod....
 
34.
Schaetzl, R.J., 1991. A lithosequence of soils in extremely gravelly dolomitic parent materials, Bois Blanc Island, Lake Huron. Geoderma 48(3–4), 305–320. https://doi.org/10.1016/0016-7....
 
35.
Skiba, S., Kacprzak, A., Szymański, W., Musielok, Ł., 2011. Walory przyrodnicze górskich gleb rumoszowych. Roczniki Bieszczadzkie 19, 335–348. (in Polish with English abstract).
 
36.
Skiba S., Komornicki T., 1983. Gleby organiczno-sufozyjne w Tatrach Polskich. Roczniki Gleboznawcze – Soil Science Annual 34, 8–16.
 
37.
Soil Survey Staff, 2022. Keys to Soil Taxonomy, 13th ed. USDA-Natural Resources Conservation Service, Washington, USA.
 
38.
Systematyka gleb Polski, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław–Warszawa.
 
39.
Telega, P., 2022. Gleby organiczne ściółkowe – geneza, właściwości i rola ekologiczna w ekosystemach górskich. Rozprawa doktorska, Uniwersytet Przyrodniczy we Wrocławiu. (manuscript in Polish with English abstract).
 
40.
Thomas, G.W., 1996. Soil pH and soil acidity. [In:] Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. (Eds.). Methods of soil analysis, part 3, chemical methods. SSSA-ASA, Madison, Wisconsin.
 
41.
Trowbridge, R. (Ed.), 1980. First progress report of the Working Group on Organic Research Branch. Agriculture Canada, Ontario.
 
42.
Vaughan, K.L., Mc Daniels, P.A., 2009. Organic soils in basalitic lava in cool, arid environment. Soil Science Society of America Journal 73, 1510–1518. https://doi.org/10.2136/sssaj2....
 
43.
Wasak, K., Drewnik, M., 2015. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland – a case study from the Tatra Mountains (Poland). Solid Earth 6, 1103–1115. https://doi.org/10.5194/se-6-1....
 
44.
Zanella, A., Ascher-Jenull, J., Ponge, J.F., Bolzonella, C., Banas, D., de Nobili, M., Fusaro., S., Sella, L., Giannini, R., 2018. Humusica: soil biodiversity and global change. Bulletin of Geography. Physical Geography Series 14, 15–36. https://doi.org/10.2478/bgeo-2....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top