ORIGINAL PAPER
Morphology and selected properties of alluvial soils in the Odra River valley, SW Poland
More details
Hide details
1
Instytut Nauk o Glebie, Żywienia Roślin i Ochrony Środowiska, Uniwersytet Przyrodniczy we Wrocławiu, Polska
Submission date: 2022-07-27
Final revision date: 2022-09-29
Acceptance date: 2022-10-25
Online publication date: 2022-10-25
Publication date: 2022-11-25
Corresponding author
Dorota Kawałko
Instytut Nauk o Glebie, Żywienia Roślin i Ochrony Środowiska, Uniwersytet Przyrodniczy we Wrocławiu, Polska
Soil Sci. Ann., 2022, 73(3)156062
KEYWORDS
ABSTRACT
The aim of the research carried out in the middle Odra valley, SW Poland, was to demonstrate the diversification of the morphology and selected properties of alluvial soils used for agricultural purposes and to assess their changes in the conditions of river regulation. The research was carried out in the low valley of the Odra River in its middle course downstream from Wrocław. Four soil profiles were exposed on the right bank of the Odra River on the Holocene floodplain terrace. Two profiles were located in the embanked zone used as grassland, and next two profiles were located outside the embankments in the areas used as arable lands. Soils were described, sampled and analyzed using the standard procedures in soil science. The studied soils differed in the morphological features of individual genetic horizons, the location of the groundwater table, the extent and intensity of redoximorphic features, as well as the depth and stratification of the alluvial parent material. This was reflected in the classification: Eutric Fluvic Gleysol (Pantoloamic), Eutric Gleyic Fluvic Cambisol (Ochric), Eutric Fluvic Stagnic Cambisol (Ochric), Eutric Stagnic Fluvisol (Katoarenic, Ochric, Brunic). In the area of this research, the effects of terrain micro-relief former meandering of the river are clearly visible, which is manifested by the heavier texture of the soils situated presently close to the river and lighter texture of soils located further away. The deep occurrence of the groundwater table in soils located in the slightly higher situated sites results in a lowering of vertical range of gleyic properties and their replacement with stagnic properties in the middle part of the soil profile. The change of the water regime contributed to the increase of biological activity, and thus the development of the cambic horizon. The transformation of alluvial soils used as permanent grassland into arable soils causes not only a decrease in the soil organic carbon content in the soil, but also a decrease in the unit sorption capacity of humus compounds.
REFERENCES (40)
1.
Banaszuk, H., 1987. Zależność układu przestrzennego, wykształcenia litologicznego i cech profilowych mad od budowy geomorfologicznej doliny zalewowej rzek niżowych na przykładzie odcinka doliny Narwi. Roczniki Gleboznawcze – Soil Science Annual 38(3), 103–119. (In Polish with English abstract).
2.
Bullinger-Weber, G., Gobat, J.M., 2006. Identification of facies models in alluvial soil formation: The case of a Swiss alpine floodplain. Geomorphology 74(1–4), 181–195.
3.
Charlton, R., 2008. Fundamentals of fluvial geomorfology. Routledge, London.
4.
Chojnicki, J., 2002. Procesy glebotwórcze w madach środkowej doliny Wisły i Żuław. Fundacja Rozwój SGGW, Warszawa. (In Polish with English abstract).
5.
Cieśla, A., 2009. Wpływ zabudowy hydrotechnicznej Odry na zróżnicowanie fitosocjologiczne siedlisk łęgowych kompleksu leśnego Prawików. Leśne Prace Badawcze 70(2), 161–174. (In Polish with English abstract).
6.
Ciszewski, D., Czajka, A. (2015). Human‐induced sedimentation patterns of a channelized lowland river. Earth Surface Processes and Landforms, 40(6), 783–795.
7.
Czarnecka, B., Pelc, M., 2007. Biodiversity on the floristic and phytocoenotic levels: the comparison of forest and non-forest landscapes in small river valleys. Ecological Questions 8, 37–45.
8.
De Becker, P., Hermy, M., Butaye, J., 1999. Ecohydrological characterization of a groundwater-fed alluvial floodplain mire. Applied Vegetation Science 2, 215–228.
9.
Decocq, G., 2002. Patterns of plant species and community diversity at different organization levels in a forested riparian landscape. Journal of Vegetation Science 13, 91–106.
10.
Dezső, J., Czigány, S., Nagy, G., Pirkhoffer, E., Słowik, M., Lóczy, D., 2019. Monitoring soil moisture dynamics in multilayered Fluvisols. Bulletin of Geography. Physical Geography Series 16(1), 131–146.
11.
Falkowska, E., Falkowski, T., 2010. Właściwości sorpcyjne utworów wezbraniowych na tarasie zalewowym doliny środkowej Wisły w okolicach Magnuszewa w świetle morfogenezy form fluwialnych. Przegląd Naukowy - Inżynieria i Kształtowanie Środowiska 2(48), 35–48.
12.
Forman, R.T.T., Godron, M., 1981. Patches and structural compoments for a landscape ecology. BioScience 3, 733–740.
13.
Głuchowska, B., Pływaczyk, L. 2008. Zwierciadło wody gruntowej w dolinie Odry poniżej stopnia wodnego w Brzegu Dolnym. Współczesne Problemy Inżynierii Środowiska 5, 1−109. (In Polish with English abstract).
14.
Grevilliot, F., Krebs, L., Muller, P., 1998. Comparative importance and interference of hydrological conditions and soil nutrient gradient in floristic biodiversity in flood meadows. Biodiversity & Conservation 7, 1495−1520.
15.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome.
16.
Jonczak, J., Olejniczak, M., Parzych, A., Sobisz, Z., 2016. Dynamics, structure, chemistry of litterfall in hearwater riparian forests on the area of Middle Pomerania. Journal of Elementology 21(2), 381–392.
https://doi.org/10.5601/jelem.....
17.
Kabała, C., Gałka, B., Jezierski, P., Bogacz, A., 2011. Transformacja mad w warunkach regulacji rzeki i długotrwałego użytkowania rolniczego w dolinie Dobrej na Nizinie Ślaskiej. Roczniki Gleboznawcze – Soil Science Annual 62(2), 141–153. (In Polish with English abstract).
18.
Kabała, C. (Ed.), 2015.. Soils of Lower Silesia. Origins, diversity and protection. Monograph published on 29th congress of the Polish Society of Soil Science and International Year of Soil (IYS2015) Wrocław.
http://www.org.up.wroc.pl/igos....
19.
Kabała, C., Karczewska, A., 2017. Metodyka analiz laboratoryjnych gleb i roślin. Wyd. 8. INoGiOŚ. UPWr.
http://karnet.up.wroc.pl /~kabala Analizy2017v8.pdf.
20.
Kabała, C. et al. , 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(1), 71–97.
21.
Kawałko, D., Jezierski, P., Kaszubkiewicz, J., 2011. Właściwości fizykochemiczne gleb w lasach grądowych na terenie Parku Krajobrazowego Dolina Jezierzycy. Ochrona środowiska i zasobów naturalnych, IOŚ Warszawa, 49, 279-287. (In Polish with English abstract).
22.
Kawałko, D., Halarewicz, A., Kaszubkiewicz, J., Jezierski, J., 2017. Tempo dekompozycji opadu organicznego podczas przemian siedlisk łęgowych. Sylwan 161(7), 565−572. (In Polish with English abstract).
23.
Kawałko, D., Jezierski, P., Kabała, C., 2021. Morphology and physicochemical properties of alluvial soils in riparian forests after river regulation. Forests, 12(3), 329.
https://doi.org/10.3390/f12030....
24.
Kholodov, V.N., 2010. Lithogenesis types and their modern interpretations. Lithology and Mineral Resources, 45(6), 519-531.
25.
Klimek, K., 1974. The structure and mode of sedimentation of the flood-plain deposits in the Wisłoka valley (South Poland). Studia Geomorphica Carpatho-Balcanica 8, 137-151.
26.
Kobierski, M., Banach-Szott, M., 2022. Organic Matter in Riverbank Sediments and Fluvisols from the Flood Zones of Lower Vistula River Agronomy 12(2), 536.
https://doi.org/10.3390/agrono....
27.
Labaz, B., Kabala, C., 2016. Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena 139, 117–126.
28.
Langhans, S.D., Tiegs, S.D., Uehlinger, U., Tockner, K., 2006. Environmental heterogeneity controls organic matter dynamics in river-floodplain ecosystems. Journal of Ecology 54, 675–680.
29.
Laskowski, S., 1986. Powstawanie i rozwój oraz właściwości gleb aluwialnych doliny środkowej Odry. Zeszyty Naukowe AR we Wrocławiu, Rozprawy 56. (In Polish with English abstract).
30.
Leopold, L.B., Wolman, L.G., Miller, J.P., 1995. Fluvial processes in geomorphology. W.H. Freeman, San Francisco.
31.
Ligęza, S., 2016. Zmienność współczesnych mad puławskiego odcinka Wisły. Rozprawy Naukowe UP, Lublin. (In Polish with English abstract).
32.
Marks, L., 2011. Quaternary glaciations in Poland. Developments in Quaternary Sciences 15, 299–303.
33.
Papuga, K., Kaszubkiewicz, J., Wilczewski, W., Staś, M., Belowski, J., Kawałko, D., 2018. Soil grain size analysis by the dynamometer method – a comparison to the pipette and hydrometer method. Soil Science Annual 69, 17–27.
https://doi.org/10.2478/ssa-20....
34.
Pawlak, W., Pawlak, J., 2008. Atlas Śląska Dolnego i Opolskiego. Polskie Towarzystwo Geograficzne. Oddział Kartograficzny, Wrocław.
35.
Richardson, J.L., Edmonds, W.J., 1987. Linear regression estimation of Jenny’s relative effectiveness of state factors equation. Soil Science 144, 203–208.
36.
Roj-Rojewski, S., Hryniewiecka, I., 2009. Wykształcenie profilowe i właściwości fizyczne gleb mułowato-glejowych i madowych w dolinie Supraśli w okolicy Jurowiec. Roczniki Gleboznawcze – Soil Science Annual 60(4), 85-90. (In Polish with English abstract).
37.
Roy-Rojewski, S., Banaszuk, H., 2004. Typologia i sekwencja gleb mułowych i mad na tle mikrorzeźby tarasów zalewowych Narwi i Biebrzy. Roczniki Gleboznawcze – Soil Science Annual 55(4) 115–127. (In Polish with English abstract).
38.
Šimanský, V., 2018. Can soil properties of Fluvisols be influenced by river flow gradient. Acta Fytotechnica et Zootechnica 21(2), 63–76.
39.
Van Reeuwijk, L.P., 1992. Procedures for soil analysis. International Soil Reference and Information Centre, Technical paper 19, Wageningen.
40.
Ward, J.V., Malard, F., Tockner, K., 2002. Landscape ecology: a framework for integrating pattern and process in river corridors. Landscape Ecology 17(1), 35–45.