PRACA ORYGINALNA
Influence of 96 years of mineral and organic fertilization on selected soil properties: a case study from long-term field experiments in Skierniewice, central Poland
Więcej
Ukryj
1
Institute of Agriculture, Department of Soil Science, Warsaw University of Life Sciences - SGGW, Polska
2
Vietnam National University of Agriculture – VNUA, Faculty of Natural Resources and Environment, Department of Soil Science and Plant Nutrition, Hanoi, Vietnam
Data nadesłania: 11-08-2022
Data ostatniej rewizji: 01-03-2023
Data akceptacji: 07-03-2023
Data publikacji online: 07-03-2023
Data publikacji: 26-04-2023
Autor do korespondencji
Quoc Viet Hoang
Institute of Agriculture, Department of Soil Science, Warsaw University of Life Sciences - SGGW, Nowoursynowska St. 159, building no. 37, 02-776, Warsaw, Polska
Soil Sci. Ann., 2023, 74(1)161945
SŁOWA KLUCZOWE
STRESZCZENIE
Long-term agricultural experiments allow for the determination of the influence of agricultural practices on soil properties. The objective of the study was to determine the effect of 96-year-old fertilization (NPK mineral fertilization and farmyard manure (FYM) use) on selected physical and chemical soil properties. The research was carried out in an experimental field in Skierniewice, central Poland, where the experiments have been conducted since 1923. Seven soil profiles (Retisols or Luvisols) were studied. Long-term fertilization caused various changes in the chemical properties of the studied soil (pH, the content of total organic carbon (TOC), total nitrogen (TN) and total sulphur (TS); exchangeable acidity (EA), total potential acidity (hydrolytic acidity) (TPA), cation exchange capacity (CEC), the total exchangeable bases (TEB), base saturation (BS)). The effect of long-term fertilization is most evident in the topsoil (the Ap horizon). The NPK fertilization led to acidification which was expressed by the decrease of soil pH (down to the value of 5.1), as well as the increase of EA, TPA, and exchangeable Al. Long-term high-dose FYM application (40 t and 60 t ha-1 per year) led to the stabilization of soil pH to a level of 6.2–6.5 throughout the soil profile (down to 120 cm). The use of a combination of NPK fertilization and FYM application led to acidification of the topsoil similar to the soil in which NPK fertilizers were applied alone. Long-term FYM application led to the increase in TOC, TN, and TS concentrations in the Ap horizons of the studied soils. Long-term use of NPK fertilizers had no significant effect on soil CEC, however long-term use of FYM increased the CEC in the Ap horizon of soils. An overall positive effect has been confirmed in the use of high doses of FYM (40 t and 60 t ha-1 per year), which improves the chemical properties (soil pH, TOC, TN, and TS content, as well as CEC) of the soil compared to the control plot and plots with NPK fertilization alone. These findings were confirmed by PCCA analysis.
REFERENCJE (46)
1.
Barak, P., Jobe, B.O., Krueger, A.R., Peterson, L.A., Laird, D.A., 1997. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant and Soil 197, 61–69.
https://doi.org/10.1023/A:1004....
2.
Bednarek, W., Dresler, S., Tkaczyk, P., Hanaka, A., 2012. Wpływ gnojowicy i NPK na wybrane właściwości sorpcyjne gleby. Journal of Elementology 17(4), 547–557.
https://doi.org/10.5601/jelem.....
3.
Blecharczyk, A., 1999. Forty-years o fertilizating experiment in Brody with crops grown continuously and in crop rotation. Zeszyty Problemowe Postępów Nauk Rolniczych 465, 261–272.
4.
Brogowski, Z., Czerwiński, Z., 2016. Materials for soil science exercises. Part II. Wydawnictwo SGGW (in Polish).
5.
Caires, E.F., Garbuio, F.J., Churka, S., Barth, G., Corrêa, J.C.L., 2008. Effects of soil acidity amelioration by surface liming on no-till corn, soybean, and wheat root growth and yield. European Journal of Agronomy 28(1), 57–64.
https://doi.org/10.1016/j.eja.....
6.
Chroboczek, E., 1962. Ergebnisse des 40jährigen Fruchtfolge-Versuches mit Gemüsepflanzen in Skierniewice. Archiv Für Gartenbau 10(3/4), 216–245.
https://doi.org/10.1515/978311....
7.
Ciaccia, C., Ceccarelli, D., Antichi, D., Canali, S., 2020. Chapter 10 - Long-term experiments on agroecology and organic farming: the Italian long-term experiment network. [In:] Bhullar, G.S., Riar, A. (Eds.), Long-Term Farming Systems Research. Academic Press, 183–196.
https://doi.org/10.1016/b978-0....
8.
Ge, S., Zhu, Z., Jiang, Y., 2018. Long-term impact of fertilization on soil pH and fertility in an apple production system. Journal of Soil Science and Plant Nutrition 18, 282–293.
https://doi.org/10.4067/S0718-....
9.
Grosse, M., Hoffmann, C., Specka, X., Svoboda, N., 2020. Chapter 9 - Managing long-term experiment data: a repository for soil and agricultural research. [In:] Bhullar, G.S., Riar, A. (Eds.), Long-Term Farming Systems Research. Academic Press, 167–182.
https://doi.org/https://doi.or....
10.
Guidelines for soil description, 2006. Fourth edition, FAO, Rome.
11.
Hemalatha, S., Chellamuthu, S., 2013. Impacts of long term fertilization on soil nutritional quality under finger millet: maize cropping sequence. Journal of Environmental Research and Development 7(4a), 1571–1576.
12.
Högberg, P., Fan, H., Quist, M., Binkley, D., Tamm, C.O., 2006. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology 12(3), 489–499.
https://doi.org/10.1111/j.1365....
13.
Holthusen, D., Peth, S., Horn, R., Kühn, T., 2012. Flow and deformation behavior at the microscale of soils from several long-term potassium fertilization trials in Germany. Journal of Plant Nutrition and Soil Science 175, 535–547.
https://doi.org/10.1002/jpln.2....
14.
IUSS Working Group WRB., 2022. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Vienna, Austria.
15.
Jarecki, M., Krzywy, E., 1991. Kształtowanie się zawartości węgla i azotu oraz innych składników chemicznych w glebie pod wpływem wieloletniego nawożenia obornikiem i gnojowicą. Roczniki Gleboznawcze - Soil Science Annual 32(3/4), 37–44.
16.
Jenkinson, D.S., Bradbury, N.J., Coleman, K., 1994. How the Rothamsted Classical Experiments have been used to develop and test models for the turnover of carbon and nitrogen in soil. [In:] Johnston, A.E., Leigh, R.A. (Eds.), Long-Term Experiments in Agricultural and Ecological Sciences. CABI International, Wallingford, Oxon (CABI), 117–138.
17.
Kołodziejczyk, M., Antonkiewicz, J., Kulig, B., 2017. Effect of living mulches and conventional methods of weed control on weed occurrence and nutrient uptake in potato. International Journal of Plant Production 11, 275–284.
18.
Krull, E.S., Baldock, J.A., Skjemstad, J.O., 2003. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Functional Plant Biology 30(2), 207–222.
https://doi.org/10.1071/FP0208....
19.
Krzywy, E., Wenglikowska, E., Krupa, J., 1989. Wpływ wieloletniego nawożenia na zawartość n-ogółem w glebie lekkiej i plonowanie roślin. Roczniki Gleboznawcze - Soil Science Annual 40(1), 155–164.
20.
Li, Z., Liu, M., Wu, X., Han, F., Zhang, T., 2010. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China. Soil and Tillage Research 106(2), 268–274.
https://doi.org/10.1016/j.stil....
21.
Macdonald, A.J., Poulton, P.R., Glendining, M.J., Powlson, D.S., 2020. Chapter 1 - Long-term agricultural research at Rothamsted. [In:] Bhullar, G.S., Riar, A. (Eds.), Long-Term Farming Systems Research. Academic Press, 15–36.
https://doi.org/https://doi.or....
22.
Marks, L., 2005. Pleistocene glacial limits in the territory of Poland. Przegląd Geologiczny 53(10/2), 988–993.
23.
Mazur, T., Sądej, W., 1996. Zmiany właściwości fizykochemicznych gleby w wyniku wieloletniego nawożenia gnojowicą trzody chlewnej, obornikiem i nawozami mineralnymi. Roczniki Gleboznawcze - Soil Science Annual 47(3/4), 101–108.
24.
Mazur, T., Sądej, W., 1989. Wpływ wieloletniego nawożenia gnojowicą, obornikiem i npk na niektóre chemiczne i fizykochemiczne właściwości gleby. Roczniki Gleboznawcze - Soil Science Annual 40(1), 147–154.
25.
Mercik, S., 1994. Most important soil properties and yielding in long-term static fertilizing experiments in Skierniewice. Roczniki Gleboznawcze - Soil Science Annual 44(suppl.), 71–78.
26.
Mercik, S., Stȩpień, M., Stȩpień, W., Sosulski, T., 2005. Dynamics Of Organic Carbon Content In Soil Depending On Long-Term Fertilization And Crop Rotation. Roczniki Gleboznawcze - Soil Science Annual 56(3/4), 53–59.
27.
Munsell Soil Color Charts, 2009. Munsell Color Co. Inc, Baltimore 18, Maryland 21218, USA.
28.
Murawska, B., Kondratowicz-Maciejewska, K., Spychaj-Fabisiak, E., Różański, S., Knapowski, T., Rutkowska, B., 2017. Wpływ wieloletniego nawożenia azotem i obornikiem na zmiany wybranych właściwości materii organicznej gleby lekkiej. Journal of Central European Agriculture 18(3), 542–553.
https://doi.org/10.5513/JCEA01....
29.
Pansu, M., Gautheyrou, J., 2006. Handbook of soil analysis: Mineralogical, organic and inorganic methods. Springer, Berlin Heidelberg, 993.
https://doi.org/10.1007/978-3-....
30.
Polish Soil Classification (Systematyka Gleb Polski), 2019. Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław –Warszawa, 235.
31.
Reeves, D.W., 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research 43(1-2), 131–167.
https://doi.org/10.1016/S0167-....
32.
Ring, E., Jacobson, S., Högbom, L., 2011. Long-term effects of nitrogen fertilization on soil chemistry in three Scots pine stands in Sweden. Canadian Journal of Forest Research 41(2), 279–288.
https://doi.org/10.1139/X10-20....
33.
Romanenkov, V.A., Shevtsova, L.K., Rukhovich, O. V, Belichenko, M. V, 2020. Chapter 8 - Geographical network: legacy of the Soviet era long-term field experiments in Russian agriculture. [In:] Bhullar, G.S., Riar, A. (Eds.), Long-Term Farming Systems Research. Academic Press, 147–165.
https://doi.org/https://doi.or....
34.
Rumpel, J., Ostrzycka, J., 1999. Yield and some chemical constituents of leek (Allium porum L.) and carrot (Daucus carota L.) grown in long-term fertilization experiment. Zeszyty Problemowe Postepow Nauk Rolniczych 465, 51–59.
35.
Saarsalmi, A., Tamminen, P., Kukkola, M., 2014. Effects of long-term fertilisation on soil properties in scots pine and Norway spruce stands. Silva Fennica 48.
https://doi.org/10.14214/sf.98....
36.
Siebielec, G., Matyka, M., Łopatka, A., Kaczyński, R., Kuś, J., Oleszek, W., 2020. Chapter 7 - Testing long-term impact of agriculture on soil and environment in Poland. [In:] Bhullar, G.S., Riar, A. (Eds.), Long-Term Farming Systems Research. Academic Press, 123–146.
https://doi.org/https://doi.or....
37.
Šimanský, V., Jonczak, J., 2019. Sorption Capacity of Sandy Soil under Long-Term Fertilisation. Agriculture (Pol’nohospodarstvo) 65(4), 164–171.
https://doi.org/10.2478/AGRI-2....
38.
Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, Ł., Stępień, W., 2019. How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma 342, 75–84.
https://doi.org/10.1016/j.geod....
39.
Soil Survey Division Staff, 1993. Soil Survey Manual. Soil Conservation Service. Department of Agriculture Handbook 18, U.S.
40.
Stȩpień, W., 1989. Działanie potasu w zależności od stopnia jego nagromadzenia w glebie w wyniku wieloletniego nawożenia. Roczniki Gleboznawcze - Soil Science Annual 40(1), 129–145.
41.
Stȩpień, W., Kobiałka, M., 2019. Effect of long-term organic and mineral fertilisation on selected physico-chemical soil properties in rye monoculture and five-year crop rotation. Soil Science Annual 70(1), 34–38.
https://doi.org/10.2478/ssa-20....
42.
Tian, K., Zhao, Y., Xu, X., Hai, N., Huang, B., Deng, W., 2015. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agriculture, Ecosystems & Environment 204, 40–50.
https://doi.org/https://doi.or....
43.
Tombácz, E., Libor, Z., Illés, E., Majzik, A., Klumpp, E., 2004. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry 35(1), 257–267.
https://doi.org/10.1016/j.orgg....
44.
Wang, J., Lin, X., Yin, R., Chu, H., Chen, M., Dai, J., Qin, S., 2009. Changes in soil humic acids, microbial biomass carbon and invertase activity in response to fertilization regimes in a long-term field experiment. Plant Nutrition & Fertilizer Science 15(2), 352–357.
45.
Weigel, A., Kubat, J., Körschens, M., Powlson, D.S., Mercik, S., 1998. Determination of the decomposable part of soil organic matter in arable soils. Archives of Agronomy and Soil Science 43, 123–143.
https://doi.org/10.1080/036503....
46.
Wenglikowska, E., 1986. Działanie nawożenia mineralnego stosowanego na tle obornika w plonowniu roślin w wieloletnich doświadczeniach. Roczniki Gleboznawcze - Soil Science Annual 37(2–3), 421–428.