PRACA ORYGINALNA
Increase of in-dyke alluvial soil fertility, growth and yield of maize (Zea mays L.) by potent Rhodopseudomonas palustris strains
Więcej
Ukryj
1
An Giang University, Vietnam National University, Ho Chi Minh City,, Viet Nam
2
Faculty of Crop Science, College of Agriculture,, Can Tho University, Can Tho 94115, Vietnam, Viet Nam
Data nadesłania: 15-01-2024
Data ostatniej rewizji: 11-03-2024
Data akceptacji: 25-03-2024
Data publikacji online: 25-03-2024
Data publikacji: 25-03-2024
Autor do korespondencji
Nguyen Quoc Khuong
Faculty of Crop Science, College of Agriculture,, Can Tho University, Can Tho 94115, Vietnam, Viet Nam
Soil Sci. Ann., 2024, 75(1)186457
SŁOWA KLUCZOWE
STRESZCZENIE
The present study was aimed to evaluate the effects of nitrogen (N) fixing Rhodopseudomonas palustris strains, VNW64, VNS89, TLS06 and VNS02 on soil fertility, growth and yield of hybrid maize cultivated on in-dyke alluvial soil (IDAS). The pot experiment followed a completely randomized block design with 10 treatments, 4 replicates for each treatment. The treatments comprised of (i) fertilization with 100% N following recommended fertilizer formula (RFF), (ii) fertilization with 85% N, (iii) fertilization with 70% N, (iv) fertilization with 55% N, (v) treatment i plus a mixture of four purple nonsulfur bacteria (MFPNSB), (vi) treatment ii plus MFPNSB, (vii) treatment iii plus MFPNSB, (viii) treatment iv plus MFPNSB, (ix) no chemical fertilization, and (x) Treatment ix plus MFPNSB. The result indicated that treatments supplied with MFPNSB enhanced soil properties, including soil pHWater, NH4+ content and total N uptake, in comparison with no supplemented bacteria, 6.11–6.15, 16.4–17.7 mg NH4+ kg-1 and 1.43–5.02 mg N pot-1 in comparison with 5.74–5.99, 11.3–12.7 mg NH4+ kg-1 and 0.82–3.11 mg N pot-1, respectively, for hybrid maize cultivated on IDAS. Inoculation of MFPNSB on maize seeds contributed to reduce 45% N of RFF, but still caused no decline in the grain yield of maize. At 100% N of RFF, the treatment supplemented MFPNSB possessed a grain yield of 20.2% higher than the treatment without supplemented MFPNSB. Additionally, the treatment fertilized with 85% N of RFF plus MFPNSB, the maize grain yield was increased by 12.5% compared to the treatment fertilized with 100% N of RFF.
REFERENCJE (43)
1.
Abadi, V.A.J.M., Sepehri, M., Rahmani, H.A., Dolatabad, H.K., Shamshiripour, M., Khatabi, B., 2021. Diversity and abundance of culturable nitrogen‐fixing bacteria in the phyllosphere of maize. Journal of Applied Microbiology 131(2), 898–912.
https://doi.org/10.1111/jam.14....
2.
Anonyms, 2010. Annual progress report Kharif 2010. [In:] Kumar, R.S. et al. (Eds.), All India coordinated research project – maize, Directorate of maize research. Pusa Campus, New Delhi-110012, India, 607.
3.
Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., Dhiba, D., 2018. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Frontiers in Microbiology 9, 1606.
https://doi.org/10.3389/fmicb.....
4.
Brum, M.D.S., Cunha, V.D.S., Stecca, J.D.L., Grando, L.F.T., Martin, T.N., 2016. Components of corn crop yield under inoculation with Azospirillum brasilense using integrated crop-livestock system. Acta Scientiarum, Agronomy 38, 485–492.
https://doi.org/10.4025/actasc....
5.
Burt, R., 2014. Soil survey field and laboratory methods manual. United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Natural Resources Conservation Service, Kellog Soil Survey Laboratory.
6.
Chai, R., Ye, X., Ma, C., Wang, Q., Tu, R., Zhang, L., Gao, H., 2019. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance and Management 14(1), 1–10.
https://doi.org/10.1186/s13021....
7.
de Oliveira Siqueira Lino, J., Delmondes Mudo, L.E., Texeira Lobo, J., Lucena Cavalcante, Í.H., de Luna Souto, A.G., Guimarães Sanches, L., Borges de Paiva Neto, V., 2023. Application of Rhodopseudomonas palustris moderates some of the crop physiological parameters in mango cultivar ‘Keitt’. Erwerbs-Obstbau 65, 1633–1645.
https://doi.org/10.1007/s10341....
8.
Harada, N., Nishiyama, M., Otsuka, S., Matsumoto, S., 2005. Effects of inoculation of phototrophic purple bacteria on grain yield of rice and nitrogenase activity of paddy soil in a pot experiment. Soil Science & Plant Nutrition 51(3), 361–367.
https://doi.org/10.1111/j.1747....
9.
Houba, V.J.G., van der Lee, J.J., Novozamski, I., 1997. Soil analysis procedures. Department of Soil Science and Plant Nutrition, Landbouwuniversiteit, Wageningen Agricultural University, Wageningen, the Netherlands.
10.
Hsieh, C., Heibaum, M., 2017. Geosynthetics for canal and river bank erosion control. [In:] Proceedings of the Geoafrica, 893–902.
11.
Imhoff, J.F., 2017. Diversity of anaerobic anoxygenic phototrophic purple bacteria. [In:] Hallenbeck, P. (Eds.), Modern topics in the phototrophic prokaryotes. Springer, Cham, 47–85.
https://doi.org/10.1007/978-3-....
12.
Kaul, J., Jain, K., Olakh, D., 2019. An overview on role of yellow maize in food, feed and nutrition security. International Journal of Current Microbiology and Applied Sciences 8(02), 3037–3048.
https://doi.org/10.20546/ijcma....
13.
Kaur, G., Singh, G., Motavalli, P.P., Nelson, K.A., Orlowski, J.M., Golden, B.R., 2020. Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal 112(3), 1475–1501.
https://doi.org/10.1002/agj2.2....
14.
Khan, N., Ilyas, N., Czajkowski, R., Attia, K.O.T.B., 2023. Insights into the molecular studies of plant growth-promoting microorganisms for sustainable agricultural production. Frontiers in Microbiology 14, 1218652.
https://doi.org/10.3389/fmicb.....
15.
Khuong, N.Q., Kantachote, D., Onthong, J., Sukhoom, A., 2017. The potential of acid-resistant purple nonsulfur bacteria isolated from acid sulfate soils for reducing toxicity of Al3+ and Fe2+ using biosorption for agricultural application. Biocatalysis and Agricultural Biotechnology 12, 329–340.
https://doi.org/10.1016/j.bcab....
16.
Khuong, N.Q., Kantachote, D., Onthong, J., Xuan, L.N.T., Sukhoom, A., 2018. Enhancement of rice growth and yield in actual acid sulfate soils by potent acid-resistant Rhodopseudomonas palustris strains for producing safe rice. Plant and Soil 429, 483–501.
https://doi.org/10.1007/s11104....
17.
Khuong, N.Q., Kantachote, D., Nookongbut, P., Onthong, J., Xuan, L.N.T., Sukhoom, A., 2020a. Mechanisms of acid-resistant Rhodopseudomonas palustris strains to ameliorate acidic stress and promote plant growth. Biocatalysis and Agricultural Biotechnology 24, 101520.
https://doi.org/10.1016/j.bcab....
18.
Khuong, N.Q., Kantachote, D., Thuc, L.V., Nookongbut, P., Xuan, L.N.T., Nhan, T.C., Xuan, N.T.T., Tantirungkij, M., 2020b. Potential of Mn2+-resistant purple nonsulfur bacteria isolated from acid sulfate soils to act as bioremediators and plant growth promoters via mechanisms of resistance. Journal of Soil Science and Plant Nutrition 20, 2364–2378.
https://doi.org/10.1007/s42729....
19.
Khuong, N.Q., Huu, T.N., Van, T.T.B., Hue, N.H., Le, N.T.T., Tien, P.D., Nhan, T.C., Xuan, L.N.T., Xuan, N.T.T., 2022a. Potential of endophytic phosphorus-solubilizing bacteria to improve soil fertility, P uptake, and yield of maize (Zea mays L.) cultivated in alluvial soil in dikes in Vietnam. Bulgarian Journal of Agricultural Science 28(2), 217–228.
20.
Khuong, N.Q. et al., 2022b. Potential of N2-fixing endophytic bacteria isolated from maize roots as biofertiliser to enhance soil fertility, N uptake, and yield of'Zea mays' L. cultivated in alluvial soil in dykes. Australian Journal of Crop Science 16(4), 461–470.
21.
Khuong, N.Q., Kantachote, D., Huu, T.N., Nhan, T.C., Nguyen, P.C., Van, T.B., Xuan, N.T., Xuan, L.N.T., 2022c. Use of potent acid resistant strains of Rhodopseudomonas spp. in Mn-contaminated acidic paddies to produce safer rice and improve soil fertility. Soil and Tillage Research 221, 105393.
https://doi.org/10.1016/j.stil....
22.
Khuong, N.Q. et al., 2023a. Potential of potent purple nonsulfur bacteria isolated from rice-shrimp systems to ameliorate rice (Oryza sativa L.) growth and yield in saline acid sulfate soil. Journal of Plant Nutrition 46(3), 473–494.
https://doi.org/10.1080/019041....
23.
Khuong, N.Q., Thuc, L.V., Giang, C.T., Xuan, L.N.T., Thu, L.T.M., Isao, A., Jun-Ichi, S., 2023b. Improvement of nutrient uptake, yield of black sesame (Sesamum indicum L.), and alluvial soil fertility in dyke by spent rice straw from mushroom cultivation as biofertilizer containing potent strains of Rhodopseudomonas palustris. The Scientific World Journal 2023, 1954632.
https://doi.org/10.1155/2023/1....
24.
Luo, L., Wang, P., Wang, D., Shi, X., Zhang, J., Zhao, Z., Zeng, J., Liao, J., Zhang, Z., Liu, Y., 2023. Rhodopseudomonas palustris PSB06 agent enhance pepper yield and regulating the rhizosphere microecological environment. Frontiers in Sustainable Food Systems 7, 1125538.
https://doi.org/10.3389/fsufs.....
25.
Metson, A.J., 1961. Methods of chemical analysis of soil survey samples. Government Printers, Wellington, New Zealand.
27.
Neina, D., 2019. The role of soil pH in plant nutrition and soil remediation. Applied and Environmental Soil Science 2019, 5794869.
https://doi.org/10.1155/2019/5....
28.
Ngosong, C., Bongkisheri, V., Tanyi, C.B., Nanganoa, L.T., Tening, A.S., 2019. Optimizing nitrogen fertilization regimes for sustainable maize (Zea mays L.) production on the volcanic soils of Buea Cameroon. Advances in Agriculture 2019, 4681825.
https://doi.org/10.1155/2019/4....
29.
Nguyen, K.Q., Kantachote, D., Onthong, J., Sukhoom, A., 2018. Al3+ and Fe2+ toxicity reduction potential by acid-resistant strains of Rhodopseudomonas palustris isolated from acid sulfate soils under acidic conditions. Annals of Microbiology 68(4), 217–228.
https://doi.org/10.1007/s13213....
30.
Penn, C.J., Camberato, J.J., 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9(6), 120.
https://doi.org/10.3390/agricu....
31.
Rafique, M., Sultan, T., Ortas, I., Chaudhary, H.J., 2017. Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. Soil Science and Plant Nutrition 63(5), 460–469.
https://doi.org/10.1080/003807....
32.
Rana, G., Meikap, S., Mondol, M., Bose, P.P., Mandal, T., 2016. Green-fertilizer, Rhodospirillum rubrum, for agricultural development on fly-ash without any toxic metal ion release. Basic Research Journal of Agricultural Science Review 5, 109–117.
33.
Saïdou, A., Balogoun, I., Ahoton, E.L., Igué, A.M., Youl, S., Ezui, G., Mando, A., 2018. Fertilizer recommendations for maize production in the South Sudan and Sudano-Guinean zones of Benin. [In:] Bationo, A., Ngaradoum, D., Youl, S., Lompo, F., Fening, J. (Eds.), Improving the profitability, sustainability and efficiency of nutrients through site specific fertilizer recommendations in West Africa Agro-Ecosystems. Springer, Cham, 2, 215–234, 2018.
https://doi.org/10.1007/978-3-....
34.
Sakarika, M., Spanoghe, J., Sui, Y., Wambacq, E., Grunert, O., Haesaert, G., Spiller, M., Vlaeminck, S.E., 2020. Purple non‐sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment. Microbial Biotechnology 13(5), 1336–1365.
https://doi.org/10.1111/1751-7....
35.
Sakpirom, J., Kantachote, D., Nunkaew, T., Khan, E., 2017. Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Research in Microbiology 168(3), 266–275.
https://doi.org/10.1016/j.resm....
36.
Shehu, B.M. et al., 2019. Balanced nutrient requirements for maize in the Northern Nigerian Savanna: Parameterization and validation of QUEFTS model. Field Crops Research 241, 107585.9.
https://doi.org/10.1016/j.fcr.....
37.
Shrivastav, P., Prasad, M., Singh, T.B., Yadav, A., Goyal, D., Ali, A., Dantu, P.K., 2020. Role of nutrients in plant growth and development. [In:] Naeem, M., Ansari, A., Gill, S. (Eds.), Contaminants in Agriculture. Springer, Cham, 43–59.
https://doi.org/10.1007/978-3-....
38.
Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1996. Methods of soil analysis. Part 3-Chemical methods, SSSA Book Ser. 5.3. SSSA, ASA, Madison, WI.
https://doi.org/10.2136/sssabo....
39.
Thuc, L.V. et al., 2022. Effects of nitrogen fertilization and nitrogen fixing endophytic bacteria supplementation on soil fertility, N uptake, growth, and yield of sesame (Sesamum indicum L.) cultivated on alluvial soil in dykes. Applied and Environmental Soil Science 2022, 1972585.
https://doi.org/10.1155/2022/1....
40.
Vo, T.D., 2021. Social impacts of high dyke construction and farmers’ responses: case of agricultural intensification in the Vietnamese Mekong Delta. International Journal of Sustainable Development Research 7(2), 28–40.
https://doi.org/10.11648/j.ijs....
41.
Walalite, T., Dekker, S.C., Keizer, F.M., Kardel, I., Schot, P.P., deJong, S.M., Wassen, M.J., 2016. Flood water hydrochemistry patterns suggest floodplain sink function for dissolved solids from the Songkhram Monsoon River (Thailand). Wetlands 36, 995–1008.
https://doi.org/10.1007/s13157....
42.
Wong, W.T., Tseng, C.H., Hsu, S.H., Lur, H.S., Mo, C.W., Huang, C.N., Hsu, S.C., Lee, K.T., Liu, C.T., 2014. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes and Environments 29(3), 303–313.
https://doi.org/10.1264/jsme2.....
43.
Zeng, Q., Sun, J., Bai, X., Xu, Z., 2023. Immobilization of phototroph-derived extracellular polymer for simultaneous removal of antibiotics and heavy metals: A sustainable approach for advanced treatment of secondary effluent. Journal of Cleaner Production 396, 136495.
https://doi.org/10.1016/j.jcle....