PL EN
PRACA ORYGINALNA
Identyfikacja gleb potencjalnie kwaśnych siarczanowych w ujściu rzeki Redy za pomocą pomiarów pH
 
Więcej
Ukryj
1
Department of Soil Science and Landscape Management, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, ul. Lwowska 1, Toruń, Poland
 
2
Laboratory for Environmental Analysis, Faculty of Earth Sciences and Spatial Management, Nicolaus Copernicus University, ul. Lwowska 1, Toruń, Poland
 
3
Geological Survey of Finland, PO Box 97, Teknologiakatu 7, FI-67101 Kokkola, Finland
 
4
Department of Soil Science, Institute of Agriculture, Warsaw University of Life Sciences – SGGW, ul. Nowoursynowska 159, 02-776, Warsaw, Poland
 
 
Data nadesłania: 09-10-2019
 
 
Data akceptacji: 22-04-2020
 
 
Data publikacji online: 03-06-2020
 
 
Data publikacji: 03-06-2020
 
 
Soil Sci. Ann., 2020, 71(2), 149-157
 
SŁOWA KLUCZOWE
STRESZCZENIE
Gleby potencjalnie kwaśne siarczanowe (ang. potential acid sulfate soils - PASS) są glebami zawierającymi siarczki żelaza, pochodzenia zarówno naturalnego, jak i antropogenicznego. W przypadku obniżenia się poziomu wody gruntowej może dochodzić do utlenienia tych związków i powstania dużych ilości kwasu siarkowego (VI). Przy słabych zdolnościach buforowych gleb skutkuje to silnym zakwaszeniem środowiska, połączonym zwykle z uwalnianiem metali ciężkich do wód gruntowych i powierzchniowych. Większość przeprowadzonych badań PASS w Polsce dotyczyła przede wszystkim podstawowego rozpoznania ich właściwości, a materiał siarczkowy po raz pierwszy wprowadzono do szóstej edycji Systematyki gleb Polski (2019). W związku z tym kluczowe znaczenie mają dalsze szczegółowe badania i wprowadzenie jednolitego podejścia metodycznego. Dlatego też celem niniejszej pracy było zastosowanie metod opartych na pomiarach pH (test inkubacyjny i szybkie utlenianie próbek 30% H2O2) do identyfikacji materiału siarczkowego w organicznych glebach nadmorskich występujących w rejonie ujścia rzeki Redy (3 profile glebowe). Metody te jako powszechnie stosowane na świecie są zalecane w SGP6. We wszystkich świeżo pobranych próbkach gleby oznaczono pH w wodzie i po utlenieniu 30% roztworem H2O2. Następnie próbki inkubowano przez 8 tygodni w temperaturze pokojowej, dokonując pomiarów pH (w wodzie) co tydzień. Początkowe wartości pH (przed inkubacją) wahały się od 5,5 do 7,0. Po 8 tygodniach inkubacji w próbkach gleb z dwóch profili zanotowano wartości pH poniżej 4,0. Zastosowanie silnego utleniacza, 30% H2O2, spowodowało nagły spadek wartości pH poniżej 2,5 we wszystkich trzech profilach. Uzyskane wyniki pomiarów pH zarówno po inkubacji, jak i po zastosowaniu nadtlenku wodoru pozwoliły na jednoznaczną identyfikację materiału siarczkowego, a tym samym potwierdzenie obecności PASS w rejonie ujścia Redy. W świetle przeprowadzonych badań obydwie metody pomiaru pH wydają się być łatwe do wykonania i tanie, co implikuje ich powszechne zastosowanie w rozpoznawaniu PASS. Należy jednak zwrócić szczególną uwagę na pewne ograniczenia związane z interpretacją pomiarów pH w próbkach organicznych potraktowanych 30% roztworem H2O2, głównie z powodu możliwego przeszacowania ich kwasowości. Z tego względu procedurę tę należy traktować wyłącznie jako uzupełniającą. W świetle uzyskanych wyników wydaje się słuszne rozważenie wprowadzenia w kolejnym wydaniu Systematyki gleb Polski niższej wartości progowej pH po inkubacji dla wyróżniania materiału siarczkowego w glebach organicznych (tj. pH <3), podobnie jak w klasyfikacji fińsko-szwedzkiej. Wymaga to jednak dalszych, szczegółowych badań.
REFERENCJE (46)
1.
Andriesse, W., 1993. Acid sulphate soils: diagnosing the ills. [In:] Dent, D.,L., van Mensvoort, M.E.F. (Eds.), Selected papers of the Ho Chi Minh City Symposium on Acid Sulphate Soils. International Institute for Land Reclamation and Improvement, Wageningen, 11–29.
 
2.
Andriesse, W., van Mensvoort M.E.F., 2006. Acid sulfate soils: Distribution and extent. [In:] Lal, R. (Ed.), Encyclopedia of Soil Science. Taylor and Francis, New York, 14–28.
 
3.
Boman, A., Becher, M., Mattbäck, S., Sohlenius, G., Auri, J., Öhrling, C., Edén, P., 2018. Klassificering av sura sulfatjordar i Finland och Sverige (Version 1.2018), 8 pp. (in Swedish). https://vimlavattenorg.files.w... [23.7.2019].
 
4.
Canfield, D.E., Raiswell, R., Westrich, J.T., Reaves, C.M., Berner, R.A., 1986. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology 54, 149–155.
 
5.
Creeper, N., Fitzpatrick, R., Shand, P., 2012. A simplified incubation method using chiptrays.
 
6.
as incubation vessels to identify sulphidic materials in acid sulphate soils. Soil Use and Management 28, 401–408. https://doi.org/10.1111/j.1475....
 
7.
Czerwiński, Z., 1996. Zasolenie wód i gleb na Kujawach (Salinity of water and soils in the Kujawy region). Roczniki Gleboznawcze – Soil Science Annual 47(3/4), 131–143.
 
8.
Dalhem, K., 2016. Bestämning av svavelspecies i sediment: En utvecklad destillationsmetod för reducerade svavelspecies (An advanced analytical method for determining sulfur species in sediments). Manuscript of MSc-thesis. Åbo Akademi University, Geology and Mineralogy, 48 pp.
 
9.
Dent, J.M., 1947. Some soil problems of empoldered rice lands in Sierra Leone. Empire Journal of Experimental Agriculture 15, 206–212.
 
10.
Dent, D., 1986. Acid sulphate soils: a baseline for research and development. International Institute for Land Reclamation and Improvement, Wageningen.
 
11.
Dent, D.L., Pons, L.J., 1995. A world perspective on acid sulphate soils. Geoderma 67, 263– 276. https://doi.org/10.1016/0016-7....
 
12.
Doyne, H.C., 1937. A note on the acidity of mangrove swamp soils. Tropical Agriculture (Trinidad) 14, 286–287.
 
13.
Eden, P., Rankonen, E., Auri, J., Yli-Halla, M., Österholm, P., Beucher, A., Rosendahl, R., 2012. Definition and classification of Finnish acid sulfate soils. 7th International Acid Sulfate Soil Conference, Vaasa. Geological Survey Of Finland, Guide 56, 29–30.
 
14.
Fältmarsch, R.M., Cström, M.E., Vuori, K.-M., 2008. Environmental risks of metals mobilised from acid sulphate soils in Finland: a literature review. Boreal Environment Research 13, 444–456.
 
15.
FAO, 2006. Guidelines for soil description. 4th edition. Rome.
 
16.
Grant, W.T., 2006. pH. [In:] Encyclopedia of Soil Science. Lal, R. (Ed.), Encyclopedia of Soil Science. Taylor and Francis, New York, 263–276.
 
17.
Hulisz, P., 2007. Propozycje systematyki gleb zasolonych występujących w Polsce (Proposals of systematics of salt-affected soils in Poland). Roczniki Gleboznawcze – Soil Science Annual 63(1/2), 121–129.
 
18.
Hulisz, P., 2013. Geneza, właściwości i pozycja systematyczna marszy brakicznych w strefie oddziaływania wód Bałtyku (Genesis, properties and systematics position of the brackish marsh soils in the Baltic coastal zone). Wydawnictwo Uniwersytetu Mikołaja Kopernika w Toruniu, Rozprawy habilitacyjne, 137 pp.
 
19.
Hulisz, P., Piernik, A., Mantilla-Contreras, J., Elvisto, T., 2016. Main driving factors for seacoast vegetation in the Southern and Eastern Baltic. Wetlands 36, 909–919. https://doi.org/10.1007/s13157....
 
20.
Hulisz, P., Kwasowski, W., Pracz, J., Malinowski, R., 2017. Coastal acid sulphate soils in Poland: a review. Soil Science Annual 68(1), 46–54.
 
21.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports, 106, FAO, Rome.
 
22.
Jayalath, N., 2012. Laboratory protocols for acid sulfate soils. CSIRO, Australia.
 
23.
Jegliński, W., 2009. The structure and evolution of the contemporary delta of the Reda River (Southern Baltic, Poland). Oceanological and Hydrobiological Studies 38, 27–40.
 
24.
Kabała, C. et al., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(1), 71–97. https://doi.org/10.2478/ssa-20....
 
25.
Kondracki, J., 2001. Geografia regionalna Polski. Wyd. Nauk. PWN, Warszawa, 441 pp.
 
26.
Kwasowski, W., 1999. Charakterystyka gleb siarczkowych i kwaśnych siarczanowych rejonu Zatoki Puckiej i okolic Mrzeżyna (Characteristics of the sulphide and acid sulphate soils in the areas of the Puck Lagoon and Mrzeżyno). Manuscript of PhD thesis. SGGW, Warsaw.
 
27.
Langenhoff, R., 1986. Distribution, mapping, classification and use of Acid Sulfate Soils in the tropics. Stenc nr 6978. Soil Survey Institute (STIBOKA), Wageningen.
 
28.
Mattbäck, S., Boman, A., Österholm, P., 2017. Hydrogeochemical impact of coarse-grained post-glacial acid sulfate soil materials. Geoderma 308, 291–301. https://doi.org/10.1016/j.geod....
 
29.
Niedźwiecki, E., Protasowicki, M., Czyż, H., Wojcieszczuk, T., Malinowski, R., 2002. Właściwości silnie zakwaszonych gleb Karsiborskiej Kępy znajdujących się pod oddziaływaniem wód rzeczno-morskich (Chemical properties of Karsiborska Kępa island’s strongly-acidic soils influenced by riverine-marine waters). Zeszyty Problemowe Postępów Nauk Rolniczych 482, 397–402.
 
30.
Niedźwiecki, E., Protasowicki, M., Wojcieszczuk, T., Malinowski, R., 2000. Zawartość siarki w glebach wstecznej delty Świny na przykładzie gleb organicznych Karsiborskiej Kępy (Sulphur content in soils of the Świna River reverse delta on the example of organic soils of the Karsiborska Kępa Island). Folia Universitatis Agriculturae Stetinensis 204, Agricultura 81, 97–102.
 
31.
Pons, L.J., 1973. Outline of the genesis, characteristics, classification and Improvement of acid sulphate soils. Proceedings of International Symposium on Acid Sulphate Soils, ILRI, Wageningen, 3–27.
 
32.
Pracz, J., 1989. Właściwości gleb tworzących się przy udziale słonej wody gruntowej w polskiej strefie przybałtyckiej (Properties of soils formed under the influence of saline ground water in the region of the Polish Baltic coast). Rozprawy naukowe i monografie. Wyd. SGGW-AR, Warszawa, 1–91.
 
33.
Pracz, J., Kwasowski, W., 2005. Organiczne gleby słone występujące w rejonie Zatoki Puckiej (Organic saline soils from the area of the Puck Bay). Roczniki Gleboznawcze – Soil Science Annual 46 (3/4), 89–99.
 
34.
Pracz, J., Kwasowski, W., 2006. Properties of sulphide soils of the Moście Błota peatland at Puck Bay. Polish Journal of Environmental Studies 16(5D), 105–113.
 
35.
Smith, J., Melville, M.D., 2004. Iron monosulfide formation and oxidation in drain-bottom sediments of an acid sulfate soil environment. Applied Geochemistry 19, 1837–1853. https://doi.org/10.1016/j.apge....
 
36.
Staszek, W., Kistowski, M., 1999. Studium uwarunkowań i kierunków zagospodarowania przestrzennego gminy Kosakowo. Uwarunkowania przyrodnicze (Study of conditions and directions of spatial development of the Kosakowo commune. Natural conditions). Biuro Studiów i Pomiarów Proekologicznych EKOMETRIA, Gdańsk, 8 pp.
 
37.
Sullivan, L.A., Fitzpatrick, R.W., Bush, R. T., Burton, E.D., Shand, P., Ward, N.J., 2010. The classification of acid sulfate soil materials: further modifications. Southern Cross GeoScience Technical Report No. 310. Southern Cross University, Lismore, NSW, Australia.
 
38.
Sullivan, L., Ward, N., Toppler, N., Lancaster, G., 2018. National Acid Sulfate Soils Guidance: National acid sulfate soils identification and laboratory methods manual. Department of Agriculture and Water Resources, Canberra, ACT.
 
39.
Systematyka gleb Polski, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław -Warszawa, 250 pp.
 
40.
Urbańska, E., Hulisz, P., Bednarek, R., 2012. Effect of sulphide oxidation on selected soil properties. Journal of Elementology 17(3), 505–515. https://doi.org/10.5601/jelem.....
 
41.
Uścinowicz, S., 2006, A relative sea–level curve for the Polish Southern Baltic Sea, Quaternary International 145–146, 86–105. https://doi.org/10.1016/j.quai....
 
42.
Uzarowicz, Ł., 2013. Microscopic and microchemical study of iron sulphide weathering in a chronosequence of technogenic and natural soils. Geoderma 197–198, 137–150. https://doi.org/10.1016/j.geod....
 
43.
Uzarowicz, Ł., Skiba, S., 2011. Technogenic soils developed on mine spoils containing iron sulphides: Mineral transformations as an indicator of pedogenesis. Geoderma 163(1–2), 95–108. https://doi.org/10.1016/j.geod....
 
44.
van Breemen, N., 1973. Soil forming processes in acid sulphate soils. International Institute for Land Reclamation and Improvement, Wageningen, 66–129.
 
45.
van Breemen, N., 1982. Genesis, morphology, and classification of acid sulfate soils in coastal plains. [In:] Kittrick, J.A., Fanning, D.S., Hossner, L.R. (Eds.), Acid Sulfate Weathering. SSSA Special Publication 10, 95–108.
 
46.
Ward, N.J., Sullivan, L.A., Bush, R.T., Lin, C., 2002. Assessment of peroxide oxidation for acid sulfate soil analysis. 2. Acidity determination. Australian Journal of Soil Research 40 (3), 443–454.
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top