PL EN
ORIGINAL PAPER
Humic acids in permanent grasslands of the Czersk Meadows Complex, north Poland
 
More details
Hide details
1
Faculty of Agriculture and Biotechnology, Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, Polska
 
2
Faculty of Agriculture and Biotechnology, Department of Botany and Ecology, Bydgoszcz University of Science and Technology, Polska
 
 
Submission date: 2022-05-28
 
 
Final revision date: 2022-08-23
 
 
Acceptance date: 2022-10-27
 
 
Online publication date: 2022-10-27
 
 
Publication date: 2022-12-03
 
 
Corresponding author
Magdalena Banach-Szott   

Faculty of Agriculture and Biotechnology, Department of Biogeochemistry and Soil Science, Bydgoszcz University of Science and Technology, Bernardynska, 85-029, Bydgoszcz, Polska
 
 
Soil Sci. Ann., 2022, 73(2)156099
 
KEYWORDS
ABSTRACT
The research objective was to determine basic soil properties and the stability of humic acids (HAs) in individual layers of the A horizon of meadow soils. Soil samples were collected from the unique Czersk Meadow Complex in north Poland, 25 years after the end of “slope-and-flooding” irrigation that had lasted for 150 years. It is a continuation of research being carried out on the Czersk Meadows. In the previous studies (Banach-Szott et al. 2021a), continuously irrigated soils were analysed. The total organic carbon content (TOC), total nitrogen content (Nt) and grain size composition were determined in soil samples. Humic acids were extracted by Schnitzer method and analysed for: elemental composition, spectrometric parameters in the UV-VIS range and hydrophilic and hydrophobic properties. The tested soils consisted largely of sand fraction, with only small amounts of clay. The TOC, Nt and TOC/Nt ratio values all depended on soil sampling depth and distance from irrigation ditch. The TOC, Nt and TOC/Nt ratio were all highest for soils collected from a depth of 0–10 cm and for those taken 25 m from the irrigation ditch. The research revealed that the HA molecules of soils collected from a depth of 0–10 cm had higher H/C ratios and spectrometric parameters and lower values of the ω parameter and HIL/HOB ratio than those from deeper layers. This indicates that the degree of maturity of HAs increases with depth. On the basis of the obtained atomic ratios (H/C, O/C, O/H), ω parameter and spectrometric properties (A2/6, A4/6 and ΔlogK), the degree of maturity for HAs molecules was highest in the soil samples taken furthest from the irrigation ditch. The results indicate that relatively high-stability HAs were formed by the processes of transformation of the organic matter of the mineral meadow soils.
 
REFERENCES (69)
1.
Albrecht, R., Petit, J.L., Terrom, G., Périssol, C., 2011. Comparison between UV spectroscopy and Nirs to assess humification process during sewage sludge and green wastes co-composting. Bioresource Technology 102(6), 4495–4500. https://doi.org/10.1016/j.bior....
 
2.
Banach-Szott, M., Dębska, B., Tobiasova, E., 2021b. Properties of humic acids depending on the land use in different parts of Slovakia. Environmental Science and Pollution Research 28, 58068–58080. https://doi.org/10.1007/s11356....
 
3.
Banach-Szott, M., Dziamski, A., Markiewicz, M., 2021a. Properties of humic acids in meadow soils irrigated with the slope-and-flooding system. Agronomy 11(12), 2553. https://doi.org/10.3390/agrono....
 
4.
Becher, M., Banach-Szott, M., Godlewska, A., 2021. Organic matter properties of spent button mushroom substrate in the context of soil organic matter reproduction. Agronomy 11(2), 204. https://doi.org/10.3390/agrono....
 
5.
Becher, M., Kalembasa, D., 2011. Frakcje azotu i węgla w poziomach próchnicznych ornych gleb brunatnoziemnych wysoczyzny siedleckiej. Acta Agrophysica 18(1), 7–16.
 
6.
Becher, M., Tołoczko, W., Godlewska, A., Pakuła, K., Żukowski, E., 2022. Fractional composition of organic matter and properties of humic acids in the soils of drained bogs of the Siedlce Heights in eastern Poland. Journal of Ecological Engineering 23(3), 208–222. https://doi.org/10.12911/22998....
 
7.
Boguta, P., D'Orazio, V., Sokołowska Z., Senesi, N., 2016. Effects of selected chemical and physicochemical properties of humic acids from peat soils on their interaction mechanisms with copper ions at various pHs. Journal of Geochemical Exploration 168, 119–126. https://doi.org/10.1016/j.gexp....
 
8.
Canellas, L.P., Piccolo, A., Dobbss, L.B., Spaccini, R., Olivares, F.L., Zandonadi, D.B., Façanha, A.R., 2010. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere 78, 457–466. https://doi.org/10.1016/j.chem....
 
9.
Chen, Y., Senesi, N., Schnitzer, M., 1977. Information provided on humic substances by E4/6 ratios. Soil Science Society American Journal 41, 352–358. https://doi.org/10.2136/sssaj1....
 
10.
COM 231 final. 2006. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Thematic Strategy for Soil Protection, Brussels. Available online: https://eur-lex.europa.eu/lega... (accessed on 26 September 2006).
 
11.
Cornejo, J., Hermosin, M.C., 1996. Interaction of humic substances and soil clays. [In:] Piccolo, A. (Ed), Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, The Netherlands, 595–624.
 
12.
de Aguiar, C., de Oliveira Torchia, D.F., van Tol de Castro, T.A., Tavares, O.C.H., de Abreu Lopes S., de Souza da Silva, L., Castro, R.N., Berbara, R.L.L., Pereira, M.G., García, A.C., 2022. Spectroscopic–chemometric modeling of 80 humic acids confirms the structural pattern identity of humified organic matter despite different formation environments Tamiris. Science of the Total Environment 833, 155133. http://dx.doi.org/10.1016/j.sc....
 
13.
Dębska, B., Banach-Szott, M., Dziamski, A., Gonet, S.S., 2010. Chromatographic characteristics (HPLC, HPSEC) of humic acids of soil fertilised with various organic fertilisers. Chemical Ecology 26, 49–57. https://doi.org/10.1080/027575....
 
14.
Dębska, B., Długosz, J., Piotrowska-Długosz, A., Banach-Szott, M., 2016. The impact of bio-fertilizer on the soil organic matter status and carbon sequestration—results from a fiel-scale study. Journal of Soils and Sediments 16, 2335–2343. https://doi.org/10.1007/s11368....
 
15.
Dębska, B., Drąg, M., Banach-Szott, M., 2007. Molecular size distribution and hydrophilic and hydrophobic properties of humic acids isolated from forest soil. Soil and Water Research 2, 45–53. https://doi.org/10.17221/2113-....
 
16.
Dębska, B., Drąg, M., Tobiasova, E., 2012. Effect of post-harvest residue of maize, rapeseed, and sunflower on humic acids properties in various soils. Polish Journal of Environmental Studies 21, 603–613.
 
17.
Dębska, B., Maciejewska, A., Kwiatkowska, J., 2002. The effect fertilization with brown coal on Haplic Luvisol humic acids. Rostlinna Vyroba 48(1), 33–39. https://doi.org/10.17221/4203-....
 
18.
Dergacheva, M.I., Nekrasova, O.A., Okoneshnikova, M.V., Vasileva, D.I., Gavrilov, D.A., Ochur, K.O., Ondar, E.E., 2012. Ratio of elements in humic acids as a source of information on the environment of soil formation. Contemporary Problems of Ecology 5, 497–504. https://doi.org/10.1134/S19954....
 
19.
Drąg, M., Dębska, B., Dziamski, A., 2007. Properties of humic substances of forest and meadow soil in the area of the Wierzchlas Reserve. Humic Substances in Ecosystems 7, 141–151.
 
20.
EIP-AGRI, Focus Group. Profitability of Permanent Grassland 2014. Available online: https://ec.europa.eu/eip/agric... (accessed on 28 May 2014).
 
21.
Eshwar, M., Srilatha, M., Rekha, K.B., Sharma, S.H.K., 2017. Characterization of humic substances by functional groups and spectroscopic methods. International Journal of Current Microbiology and Applied Sciences 6(10), 1768–1774. https://doi.org/10.20546/ijcma....
 
22.
Ferreira, F.P., Vidal-Torrado, P., Otero, X.L., Buurman, P., Martin-Neto, L., Boluda, R., Macias, F., 2013. Chemical and spectroscopic characteristics of humic acids in marshes from the Iberian Peninsula. Journal of Soils and Sediment 13, 253–264. https://doi.org/10.1007/s11368....
 
23.
Filcheva, E., Hristova, M., Nikolova, P., Popova, T., Chakalov, K., Savov, V., 2018. Quantitative and qualitative characterisation of humic products with spectral parameters. Journal of Soil Sediments 18(8), 2863–2867. https://doi.org/10.1007/s11368....
 
24.
Fischer, T., 2017. Humic supramolecular structures have polar surfaces and unpolar cores in.
 
25.
native soil. Chemosphere 183, 437–443. https://doi.org/10.1016/j.chem....
 
26.
GIOS, 2022. Monitoring chemizmu gleb ornych w Polsce w latach 2020-2022. https://www.gios.gov.pl/images....
 
27.
Gomes de Melo, B.A., Motta, F.L., Santana, M.H.A., 2016. Humic acids: Structural properties and multiple functionalities for novel technological developments. Materials Science and Engineering C 62, 967–974. https://doi.org/10.1016/j.msec....
 
28.
Gonet, S.S., Dębska, B., Zaujec, A., Banach-Szott, M., Szombathova, N., 2007. Wpływ gatunku drzew i warunków glebowo-klimatycznych na właściwości próchnicy gleb leśnych. [In:] Gonet, S.S., Markiewicz, M. (Eds.), Rola materii organicznej w środowisku - Role of organic matter in the environment. PTSH, Wrocław, Poland, 61–98. (in Polish).
 
29.
Heller, Ch., Zeitz, J., 2012. Stability of soil organic matter in two northeastern German fen soils: the influence of site and soil development Journal of Soils and Sediment 12, 1231–1240. https://doi.org/10.1007/s11368....
 
30.
Jindaluang, W., Kheouenromne, I., Suddhiprakam, A., Singh, B.P., Singh, B., 2013. Influence of soil texture and mineralogy on organic matter content and composition in physically separated fractions soil in Thailand. Geoderma 195–196, 207–219. https://doi.org/10.1016/j.geod....
 
31.
Jonczak, J., 2013. Soil organic matter properties in Stagnic Luvisols under different land use types. Acta Agrophysica 20, 565–576.
 
32.
Kämpf, I., Hölzel, N., Störrle, M., Broll, G., Kiehl, K., 2016. Potential of temperate agricultural soils for carbon sequestration: A meta-analysis of land-use effects. Science of the Total Environment 566, 428–435. https://doi.org/10.1016/j.scit....
 
33.
Kenngott, K.G.J., Riess, K., Muñoz, K., Schaumann, G.E., Buhk, C., Diehl, D., 2021. Flood pulse irrigation of meadows shapes soil chemical and microbial parameters more than mineral fertilization. Soil Systems 5, 24. https://doi.org/10.3390/soilsy....
 
34.
Khalid, M., Soleman, N., Jones, D.L., 2007. Grassland plants affect dissolved organic carbon and nitrogen dynamics in soil. Soil Biology and Biochemistry 39, 378–381. https://doi.org/10.1016/j.soil....
 
35.
Kobierski, M., 2010. Uziarnienie gleb różnych typów wytworzonych z gliny lodowcowej w aspekcie klasyfikacji PTG 2008. Roczniki Gleboznawcze - Soil Science Annual 61, 67–76. (in Polish with English abstract).
 
36.
Kobierski, M., Kondratowicz-Maciejewska, K., Banach-Szott, M., Wojewódzki, P., Castejón, J.M.P., 2018. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil. Journal of Soils and Sediment 18, 2777–2789. https://doi.org/10.1007/s11368....
 
37.
Kumada, K., 1985. Elementary composition and absorption spectra of humic and fulvic acids. Soil Science and Plant Nutrition 31(3), 437–448.
 
38.
Kumada, K., 1988. Chemistry of Soil Organic Matter. Elsevier, Amsterdam, The Netherlands.
 
39.
Łabaz, B., 2010. Właściwości kwasów huminowych gleb czarnoziemnych występujących w rejonie Kłodzka. Woda – Środowisko – Obszary wiejskie 10(3), 153–164. (in Polish).
 
40.
Lal, R., 2011. Sequestering carbon in soils of agro-ecosystems. Food Policy 36, 533–539. https://doi.org/10.1016/j.food....
 
41.
Lanyi, K., 2010. Assessment of the relations between the spectroscopic characteristics of soils and their ability to adsorb organic pollutants. Microchemical Journal 79, 249–256. https://doi.org/10.1016/j.micr....
 
42.
Milanovskii, E.Y., 2000. Amphiphilous components of soil humic substances. Eurasian Soil Science 33(6), 617–625.
 
43.
Milanovskii, E.Y., Shein, E.V., 2002. Functional role of amphiphilic humus components in humus structure formation and soil genesis. Eurasian Soil Science 35(10), 1064–1075.
 
44.
Norton, J.B., Jungst, L.J., Norton, U., Olsen, H.R., Tate, K.W., Horwath, W.R., 2011. Soil carbon and nitrogen storage in upper montane riparian meadows. Ecosystems 14, 1217–1231. https://doi.org/10.1007/s10021....
 
45.
Orlov, D.S., 1986. Humus acids of soils, first ed. AA Balkema, Rotterdam.
 
46.
Orsi, M., 2014. Molecular dynamics simulation of humic substances. Chemical and Biological Technologies in Agriculture 1(1), 1–14. https://doi.org/10.1186/s40538....
 
47.
Pizzeghello, D., Francioso, O., Concheri, G., Muscolo, A., Nardi, S., 2017. Land use affects the soil C sequestration in alpine environment, NE Italy. Forests 8(6), 197. https://doi.org/10.3390/f80601....
 
48.
Polak, J., Bartoszek, M., Żądło, M., Kos, A., Sułkowski, W.W., 2011. The spectroscopic studies of humic acid extracted from sediment collected at different seasons. Chemosphere 84, 1548–1555. https://doi.org/10.1016/j.chem....
 
49.
Preuße, G., Friedrich, S., Salzer, R., 2000. Retention behavior of humic substances in reversed phase HPLC. Fresenius Journal of Analytical Chemistry 368, 268–273. https://doi.org/10.1007/s00216....
 
50.
Rodriguez, F.J., Schlenger, P., García-Valverde, M., 2016. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and H NMR techniques. Science of the Total Environment 541, 626–637. https://doi.org/10.1016/j.scit....
 
51.
Rusanov, A.M., Anilova, L.V., 2009. The humus formation and humus in forest-steppe and steppe chernozems of the southern cisural region. Eurasian Soil Science 42(10), 1101–1108. https://doi.org/10.1134/S10642....
 
52.
Sabiniarz A., Kozłowski S. 2009b. Łąki Czerskie w aspekcie paszowym. Łąkarstwo w Polsce - Grassland Science in Poland, 12, 155–163. (in Polish with English abstract).
 
53.
Sabiniarz, A., 2006. Łąki Czerskie w aspekcie historycznym. Łąkarstwo w Polsce - Grassland Science in Poland, 9, 184–194. (in Polish with English abstract).
 
54.
Sabiniarz, A., Kozłowski, S., 2009a. Łąki Czerskie w aspekcie krajobrazowym. Łąkarstwo w Polsce - Grassland Science in Poland, 12, 141–154. (in Polish with English abstract).
 
55.
Sanchez-Monedero, M.A., Cegarra, J., Garcia, D., Roig, A., 2002. Chemical and structural evolution of humic acids during organic wast e composting. Biodegradation 13, 361–371. https://doi.org/10.1023/a:1022....
 
56.
Sapek, B., 2009. Zapobieganie stratom i sekwestracja węgla organicznego w glebach łąkowych. Inżynieria Ekologiczna - Ecological Engineering 21 48–61. (in Polish).
 
57.
Sapek, B., Burzyńska, I., 2009. Węgiel organiczny w glebie łąkowej na tle jej użytkowania, nawożenia i uwilgotnienia. Woda – Środowisko – Obszary wiejskie 9 (1), 111–127. (in Polish).
 
58.
Tan, H.K., 2012. Humic matter in soil and the environment (2nd ed.). CRC Press, Boca Raton. https://doi.org/10.1201/b17037.
 
59.
Theng, B.K.G., 1979. Formation and properties of clay-polymer complexes. Elsevier, Amsterdam, The Netherlands.
 
60.
Tinoco, P., Almendros, G., Francisco, J., Gonzalez-Vila, F.J., Sanz, J., Gonzalez-Perez, J.A., 2015. Revisiting molecular characteristics responsive for the aromaticity of soil humic acids. Journal of Soils and Sediments 15, 781–791. https://doi.org/10.1007/s11368....
 
61.
Trubetskaya, O.E., Trubetskoj, O.A., Voyard, G., Richard, C., 2013. Determination of hydrophobicity and optical properties of soil humic acids isolated by different methods. Journal of Geochemical Exploration 132, 84–89. https://doi.org/10.1016/j.gexp....
 
62.
Van Krevelen, D.W., 1950. Graphical-statistical method for investigation of the structure of coal. Fuel 26, 269–284.
 
63.
van Reeuwijk, L.P., 2002. Procedures for Soil Analysis. International Soil Reference and Information Centre, Wageningen, The Netherlands.
 
64.
Vieyra, F.E.M., Palazzi, V.I., de Pinto, M.I.S., Borsarelli, C.D., 2009. Combined UV–Vis absorbance and fluorescence properties of extracted humic substances-like for characterization of composting evolution of domestic solid wastes. Geoderma 151, 61–67. https://doi.org/10.1016/j.geod....
 
65.
Visser, S. A., 1983. Application of van Krevelen’s graphical statistical method for the study of aquatic humic material. Environmental Science and Technology 17(7), 412–417.
 
66.
Weber, J., Chen, Y., Jamroz, E., Miano, T., 2018. Preface: humic substances in the environment. Journal of Soils and Sediments 18, 2665–2667. https://doi.org/10.1007/s11368....
 
67.
Wiesmeier, M., Urbański, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., van Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschlager, U., Vogel, H., Kögel-Knabner, I., 2019. Soil organic carbon storage as a key function of soils - A review of drivers and indicators at various scales. Geoderma 333, 149–162. https://doi.org/10.1016/j.geod....
 
68.
Zdenek, F., Tesarova, M., 2004. Microbial degradation and transformation of humic acids from permanent meadow and forest soils. International Biodeterioration and Biodegradation 54, 225231. https://doi.org/10.1016/j.ibio....
 
69.
Zhang, J., Wang, J., An, T., Wei, D., Chi, F., Zhou, B., 2017. Effects of long-term fertilization on soil humic acid composition and structure in Black Soil. Plos One 12(11), 1–14. https://doi.org/10.1371/journa....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top