PL EN
ORIGINAL PAPER
How phosphorus-solubilizing bacteria Cereibacter sphaeroides changed the phosphorus uptake, growth, and yield of rice grown in salinized soils under greenhouse conditions
 
More details
Hide details
1
Collage of Agriculture, Can Tho University, Viet Nam
 
2
Institute of Food and Biotechnology, Can Tho University, Viet Nam
 
3
An Giang University, Vietnam National University, Ho Chi Minh City, Viet Nam
 
 
Submission date: 2024-10-19
 
 
Final revision date: 2025-01-06
 
 
Acceptance date: 2025-04-04
 
 
Online publication date: 2025-04-04
 
 
Publication date: 2025-04-04
 
 
Corresponding author
Nguyen Quoc Khuong   

Collage of Agriculture, Can Tho University, Viet Nam
 
 
Soil Sci. Ann., 2025, 76(1)
 
KEYWORDS
ABSTRACT
Phosphorus (P) is an important element in crop production. However, under climate change, salinization and acidification limit soil P availability and crop yield, especially rice, while the application of chemical P fertilizer causes an adverse effect on the environment. Thus, the study aimed at assessing the effectiveness of strains of purple nonsulfur bacteria (PNSB) that can solubilize P and tolerate salinity (PNSB-P) in reducing Na+ in soil and plant and improving P uptake, growth, and yield of rice in salinized soils in Vietnam. An experiment with two factors was arranged in completely randomized blocks and replicated four times under greenhouse conditions. Therein, the first factor was five levels of P fertilizers: 0 %, 25 %, 50 %, 75 %, and 100 % of the local recommended level. The second factor was the PNSB-P including single strains of Cereibacter sphaeroides ST16 and ST26, the mixed strains of both C. sphaeroides ST16 and ST26, and the negative control. The results showed that utilizing C. sphaeroides ST16 and ST26 decreased plant proline content by 2.46–6.70 µmol g-1 and soil Na+ concentration by 1.47–1.62 meq 100 g-1. Utilizing PNSB-P increased P content by 5.82–29.2 % in stem-leaf and 12.1–14.6 % in rice grain and decreased 15.1–16.4 % of Na content in stem-leaf and 8.00–15.1 % in rice grain. Moreover, utilizing PNSB-P improved soluble P content by 4.33–9.07 mg P kg-1 and total P uptake by 24.0–46.6 % compared with the negative control. The C. sphaeroides bacteria not only increased rice yield components such as the number of panicles per pot, the number of rice grains per panicle, and filled rice grain rate but also enhanced 20.7–47.6 % of rice grain yield compared with the negative control. Noticeably, utilizing mixed bacterial strains decreased 100 % of chemical P fertilizer compared with the recommendation.
REFERENCES (63)
1.
Al Azad, S., Mohamad Lal, M.T.B., 2023. The utilization of agro-based wastes by marine phototrophic microbes. [In:] Shah, M.D., Ransangan, J., Venmathi Maran, B.A. (Eds), Marine Biotechnology: Applications in Food, Drugs and Energy. Singapore: Springer Nature Singapore, 315–337. https://doi.org/10.1007/978-98....
 
2.
Alagoz, S.M., Hadi, H., Toorchi, M., Pawłowski, T.A., Lajayer, B.A., Price, G.W., Farooq, M., Astatkie, T., 2023. Morpho-physiological responses and growth indices of triticale to drought and salt stresses. Scientific Reports 13, 8896. https://doi.org/10.1038/s41598....
 
3.
Alloul, A., Wille, M., Lucenti, P., Bossier, P., Van Stappen, G., Vlaeminck, S.E., 2021. Purple bacteria as added-value protein ingredient in shrimp feed: Penaeus vannamei growth performance, and tolerance against Vibrio and ammonia stress. Aquaculture 530, 735788. https://doi.org/10.1016/j.aqua....
 
4.
Barrow, N.J., Hartemink, A.E., 2023. The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil 487, 21–37. https://doi.org/10.1007/s11104....
 
5.
Basavarajappa, P.N., Shruthi, Lingappa, M., Kadalli, G.G., Goudra Mahadevappa, S., 2021. Nutrient requirement and use efficiency of rice (Oryza sativa L.) as influenced by graded levels of customized fertilizer. Journal of Plant Nutrition 44(19), 2897–2911. https://doi.org/10.1080/019041....
 
6.
Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205–207. https://doi.org/10.1007/BF0001....
 
7.
Coca, L.I.R., González, M.T.G., Unday, Z.G., Hernández, J.J., Jáuregui, M.M.R., Cancio, Y. F., 2023. Effects of sodium salinity on rice (Oryza sativa L.) cultivation: A review. Sustainability 15(3), 1804. https://doi.org/10.3390/su1503....
 
8.
Cu, N.X., Dung, B.T.N., Duc, L., Hiep, T.K., Tranh, C.V., 2000. Analysis of soil minerals (Chapter 6). [In:] Khoa, L.V. (Eds), Methods in analyzing soil, water, and fertilizer for crops. Viet Nam Education Publishing House, Ha Noi, Vietnam, 78–99.
 
9.
Dat, L.T., Xuan, L.N.T., Nhan, T.C., Quang, L.T., Khuong, N.Q., 2024. Isolating, selecting, and identifying Na+, H+, Al3+, Fe2+, Mn2+ -resistant purple non-sulfur bacteria solubilizing insoluble phosphorus compounds from salt-contaminated acid sulfate soil for rice-shrimp system. Australian Journal of Crop Science 18, 192–199. https://doi.org/10.21475/ajcs.....
 
10.
Ehtaiwesh, A.F., 2022. The effect of salinity on nutrient availability and uptake in crop plants. Scientific Journal of Applied Sciences of Sabratha University, 9, 55–73.
 
11.
Faizullah, M.M. Chesti, M.U.H., Mir, S.A., Baba, Z.A., Wani, F.J., Kanth, R.H., Bhat, M.A., Bhat, J.A., Khan, I.M., 2024. Distribution of macro nutrients in surface and subsurface soils under saffron growing areas of Pulwama District of Jammu & Kashmir, India. Journal of Scientific Research and Reports 30, 39–46. https://doi.org/10.9734/jsrr/2....
 
12.
FAO, 2021. World Soil Day: FAO highlights the threat of soil salinization to global food security. https://www.fao.org/newsroom/d....
 
13.
Fiorentini, M., Zenobi, S., Giorgini, E., Basili, D., Conti, C., Pro, C., Monaci, E., Orsini, R., 2019. Nitrogen and chlorophyll status determination in durum wheat as influenced by fertilization and soil management: Preliminary results. PloS One 14, e0225126. https://doi.org/10.1371/journa....
 
14.
General Statistics Office of Vietnam, 2021. Mekong Delta – Promoting the advantage of the number one rice’s granary in the country. https://www.gso.gov.vn/du-lieu....
 
15.
George, T.S., Hinsinger, P., Turner, B.L., 2016. Phosphorus in soils and plants–facing phosphorus scarcity. Plant and Soil, 401, 1–6. https://doi.org/10.1007/s11104....
 
16.
Giannelli, G., Potestio, S., Visioli, G., 2023. The contribution of PGPR in salt stress tolerance in crops: unravelling the molecular mechanisms of cross-talk between plant and bacteria. Plants 12, 2197. https://doi.org/10.3390/plants....
 
17.
Hoa, T.T.C., Loan, H.T.P., Nghia, P.T., 2011. The selection for iron-rich rich variety OM 5451. Journal of Science and Technology Ministry Agricultural and Rural Development 6, 14-20.
 
18.
Hoque, T.S., Sarkar, D., Datta, R., Kibria, M.G., Ullah, R., Ahmed, N., Hossain, M.A., Masood, A., Anjum, N.A., 2024. Sustainable management of phosphorus in agriculture for environmental conservation. [In:] Anjum, N.A., Masood, A., Umar, S., Khan, N.A. (Eds.), Phosphorus in Soils and Plants. IntechOpen, London, UK. https://doi.org/10.5772/intech....
 
19.
Horneck, D.A., Sullivan, D.M., Owen, J.S., Hart, J.M., 2011. Soil test interpretation guide, Oregon Cooperative Extension.
 
20.
Houba, V.J.G., Novozamsky, I., Temminghof, E.J.M., 1997. Soil and plant analysis, part 5. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, The Netherland.
 
21.
Huo, W., Peng, Y., Maimaitiaili, B., Batchelor, W.D., Feng, G., 2023. Phosphorus fertilizer recommendation based on minimum soil surplus for cotton growing in salt-affected soils. Field Crops Research 291, 108799. https://doi.org/10.1016/j.fcr.....
 
22.
IRRI, 1996. Standard evaluation system for rice, International Network for Genetic Evaluation of Rice, International Rice Research Institute. http://www.knowledgebank.irri.....
 
23.
Iwai, R., Uchida, S., Yamaguchi, S., Nagata, D., Koga, A., Hayashi, S., Yamamoto, S., Miyasaka, H., 2023. Effects of LPS from Rhodobacter sphaeroides, a Purple Non-Sulfur Bacterium (PNSB), on the gene expression of rice root. Microorganisms 11(7), 1676. https://doi.org/10.3390/microo....
 
24.
Jesmin, A., Anh, L.H., Mai, N.P., Khanh, T.D., Xuan, T.D., 2023. Fulvic acid improves salinity tolerance of rice seedlings: Evidence from phenotypic performance, relevant phenolic acids, and momilactones. Plants 12, 2359. https://doi.org/10.3390/plants....
 
25.
Jiao, Z., Han, S. Yu, X., Huang, M., Lian, C., Liu, C., Yin, W., Xia, X., 2021. 5-Aminolevulinic acid pretreatment mitigates drought and salt stresses in poplar plants. Forests 12, 1112. https://doi.org/10.3390/f12081....
 
26.
Jiaying, M.A., Tingting, C., Jie, L., Weimeng, F., Baohua, F., Guangyan, L., Hubo, L., Juncai, L., Zhihai, W., Longxing, T., Guanfu, F., 2022. Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development. Rice Science 29(2), 166–178. https://doi.org/10.1016/j.rsci....
 
27.
Johan, P.D., Ahmed, O.H., Omar, L., Hasbullah, N.A., 2021. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy 11, 2010. https://doi.org/10.3390/agrono....
 
28.
Kayoumu, M., Iqbal, A., Muhammad, N., Li, X., Li, L., Wang, X., Gui H., Qi, Q., Ruan, S., Guo, R., Zhang, X., Song, M., Dong, Q., 2023. Phosphorus availability affects the photosynthesis and antioxidant system of contrasting low-P-tolerant cotton genotypes. Antioxidants 12, 466. https://doi.org/10.3390/antiox....
 
29.
Khanam, S., Islam, M.S., Haque, M.S., Sarmin, T., Ali, M.I., Topu, M.A., 2023. Improving yield of salt tolerant rice varieties through silicon application. Bangladesh Journal of Nuclear Agriculture 33, 1–10.
 
30.
Khuong, N.Q., Dung, N.T.T., Thu, L.T.M., Quang, L.T., Xuan, L.N.T., Phong, N.T., 2023a. The efficacy of 5-aminolevulinic acid-producing Luteovulum sphaeroides strains on saline soil fertility, nutrient uptakes, and yield of rice. Agriculture 13, 1761. https://doi.org/10.3390/agricu....
 
31.
Khuong, N.Q., Huu, T.N., Thuc, L.V., Thu, L.T.M., Xuan, D.T., Quang, L.T., Nhan, T.C., Tran, H.N., Tien, P.D., Xuan, L.N.T., Kantachote, D., 2021. Two strains of Luteovulum sphaeroides (purple nonsulfur bacteria) promote rice cultivation in saline soils by increasing available phosphorus. Rhizosphere 20, 100456. https://doi.org/10.1016/j.rhis....
 
32.
Khuong, N.Q., Kantachote, D., Dung, N.T.T., Huu, T.N., Thuc, L.V., Thu, L.T.M., Quang, L.T., Xuan, D.T., Nhan, T.C., Tien, P.D., Xuan, L.N.T., 2022. Potential of potent purple nonsulfur bacteria isolated from rice-shrimp systems to ameliorate rice (Oryza sativa L.) growth and yield in saline acid sulfate soil. Journal of Plant Nutrition 46, 473–494. https://doi.org/10.1080/019041....
 
33.
Khuong, N.Q., Nhat, N.M., Thu, L.T.M., Thuc, L.V., 2024. Influence of purple non-sulfur bacterial augmentation on soil nutrient dynamics and rice (Oryza sativa) growth in acidic saline-stressed environments. PeerJ 12, e16943. https://doi.org/10.7717/peerj.....
 
34.
Khuong, N.Q., Thuc, L.V., Quang, L.T., Thu, H.N., Xuan, D.T., Duc, H.H., Xuan, L.N.T., Thu, L.M.T., 2023b. Effects of biofertilizer supplementation, Rhodopseudomonas spp., on nitrogen and phosphorus uptakes, growth, and yield of sesame (Sesamum indicum L.) on salt-affected soil. Journal of Plant Nutrition 47, 1–17. https://doi.org/10.1080/019041....
 
35.
Landon, J.R., 2014. Booker Agricultural Soil manual: A handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Routledge, London. https://doi.org/10.4324/978131....
 
36.
Lee, S.K., Lur, H.S., Liu, C.T., 2021. From lab to farm: Elucidating the beneficial roles of photosynthetic bacteria in sustainable agriculture. Microorganisms 9(12), 2453. https://doi.org/10.3390/microo....
 
37.
Luo, Y., Ma, L., Feng, Q., Luo, H., Chen, C., Wang, S., Yuan, Y., Liu, C., Cao, X., Li, N., 2024. Influence and role of fungi, bacteria, and mixed microbial populations on phosphorus acquisition in plants. Agriculture 14, 358. https://doi.org/10.3390/agricu....
 
38.
Maeda, I., 2021. Potential of phototrophic purple nonsulfur bacteria to fix nitrogen in rice fields. Microorganisms 10(1), 28. https://doi.org/10.3390/microo....
 
39.
Marschner, P., Rengel, Z., 2023. Nutrient availability in soils. [In:] Rengel, Z., Cakmak, I., White, P.J. (Eds.), Marschner's Mineral Nutrition of Plants. Academic Press, Cambridge, Massachusetts, 499–522. https://doi.org/10.1016/B978-0....
 
40.
Metson, A.J., 1961. Methods of chemical analysis of soil survey samples. Government Printers, Wellington, New Zealand.
 
41.
Moran, R., 1982. Formulae for determination of chlorophyllous pigments extracted with N,N-Dimethylformamide. Plant Physiology 69, 1376–1381. https://doi.org/10.1104/pp.69.....
 
42.
Morey-Yagi, S.R., Kinoshita, Y., Motoki, K., Iwahashi, Y., Hanh, D.D., Kato, S., Nakano, R., Ochiai, K., Kobayashi, M., Nakazaki, T., Numata, K., 2024. Utilization of lysed and dried bacterial biomass from the marine purple photosynthetic bacterium Rhodovulum sulfidophilum as a sustainable nitrogen fertilizer for plant production. Sustainable Agriculture 2(1), 10. https://doi.org/10.1038/s44264....
 
43.
Morton, L.W., Nguyen, N.K., Demyan, M.S., 2023. Salinity and acid sulfate soils of the Vietnam Mekong Delta: Agricultural management and adaptation. Journal of Soil and Water Conservation 78(4), 85A–92A. https://doi.org/10.2489/jswc.2....
 
44.
Mukhopadhyay, R., Sarkar, B., Jat, H.S., Sharma, P.C., Bolan, N.S., 2021. Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management 280, 111736. https://doi.org/10.1016/j.jenv....
 
45.
Nguyen, K.Q., Kantachote, D., Onthong, J., Sukhoom, A., 2018. Al3+ and Fe2+ toxicity reduction potential by acid-resistant strains of Rhodopseudomonas palustris isolated from acid sulfate soils under acidic conditions. Annals of Microbiology 68, 217–228. https://doi.org/10.1007/s13213....
 
46.
Nunkaew, T., Kantachote, D., Nitoda, T., Kanzaki, H., 2015. Selection of salt tolerant purple nonsulfur bacteria producing 5-aminolevulinic acid (ALA) and reducing methane emissions from microbial rice straw degradation. Applied Soil Ecology 86, 113–120. https://doi.org/10.1016/j.apso....
 
47.
Ojha, R.B., Shrestha, S., Khadka, Y.G., Panday, D., 2021. Potassium nutrient response in the rice-wheat cropping system in different agro-ecozones of Nepal. PloS One 16(3), p.e0248837. https://doi.org/10.1371/journa....
 
48.
Rawat, P., Das, S., Shankhdhar, D., Shankhdhar, S.C., 2020. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. Journal of Soil Science and Plant Nutrition 21, 49–68. https://doi.org/10.1007/s42729....
 
49.
Romano-Armada, N., Yañez-Yazlle, M.F., Irazusta, V.P., Rajal, V.B., Moraga, N.B., 2020. Potential of bioremediation and PGP traits in streptomyces as strategies for bio-reclamation of salt-affected soils for agriculture. Pathogens 9, 117. https://doi.org/10.3390/pathog....
 
50.
Sabki, M.H., Ong, P.Y., Lee, C.T., Ibrahim, N., Van Fan, Y., Klemeš, J.J., 2021. The Potential of Rhodopseudomonas Palustris as a bio-fertiliser for sustainable agriculture. Chemical Engineering Transactions 88, 457–462. https://doi.org/10.3303/CET218....
 
51.
Shaaban, A., El-Mageed, T.A.A., El-Momen, W.R.A., Saudy, H.S., Al-Elwany, O. A. A.I., 2023. The integrated application of phosphorous and zinc affects the physiological status, yield and quality of canola grown in phosphorus-suffered deficiency saline soil. Gesunde Pflanzen 75, 1813–1821. https://doi.org/10.1007/s10343....
 
52.
Shan, Y.K., Sundar, L.S., Chao, Y.Y., 2022. Foliar application of Rhodopseudomonas palustris enhances the rice crop growth and yield under field conditions. Plants 11(19), 2452.
 
53.
Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., 1996. Methods of soil analysis, Chemical Methods. Soil Science Society of America, Madison, Wisconsin, USA. https://dx.doi.org/10.2136/sss....
 
54.
Sundar, L.S., Chao, Y.Y., 2022. Potential of purple non-sulfur bacteria in sustainably enhancing the agronomic and physiological performances of rice. Agronomy 12(10), 2347. https://doi.org/10.3390/agrono....
 
55.
Sundar, L.S., Yen, K.S., Chang, Y.T., Chao, Y.Y., 2024. Utilization of Rhodopseudomonas palustris in crop rotation practice boosts rice productivity and soil nutrient dynamics. Agriculture 14(5), 758. https://doi.org/10.3390/agricu....
 
56.
Tho, L.C.B., Umetsu, C., 2022. Rice variety and sustainable farming: A case study in the Mekong Delta, Vietnam. Environmental Challenges 8, 100532. https://doi.org/10.1016/j.envc....
 
57.
Wang, Y., Peng, S., Hua, Q., Qiu, C., Wu, P., Liu, X., Lin, X., 2021. The long-term effects of using phosphate-solubilizing bacteria and photosynthetic bacteria as biofertilizers on peanut yield and soil bacteria community. Frontiers in Microbiology 12, 693535. https://doi.org/10.3389/fmicb.....
 
58.
Wu, L., Song, L., Cao, L., Meng, L., 2023. Alleviation of shade stress in chinese yew (Taxus chinensis) seedlings with 5-aminolevulinic acid (ALA). Plants 12, 2333. https://doi.org/10.3390/plants....
 
59.
Xuan, L.N.T., Huyen, N.P.T., Thu, L.T.M., Thuy, V.T.B., Tuan, L.M., Quang, L.T., Dao, N.T.X., Thuc, L.V., Khuong, N.Q., 2024. Supplementation of P-solubilizing purple nonsulfur bacteria, Rhodopseudomonas palustris improved soil fertility, P nutrient, growth, and yield of Cucumis melo L. Open Agriculture 9, 20220247. https://doi.org/10.1515/opag-2....
 
60.
Yen, K.S., Sundar, L.S., Chao, Y.Y., 2022. Foliar application of Rhodopseudomonas palustris enhances the rice crop growth and yield under field conditions. Plants 11, 2452. https://doi.org/10.3390/plants....
 
61.
Zhang, S., Rasool, G., Wang, S., Zhang, Y., Guo, X., Wei, Z., Zhang, X., Yang, X., Wang, T., 2023. Biochar and Chlorella increase rice yield by improving saline-alkali soil physicochemical properties and regulating bacteria under aquaculture wastewater irrigation. Chemosphere 340, 139850. https://doi.org/10.1016/j.chem....
 
62.
Zhang, Z., Liu, H., Liu, X., Chen, Y., Lu, Y., Shen, M., Dang, K., Zhao, Y., Dong, Y., Li, Q., Li, J., 2021. Organic fertilizer enhances rice growth in severe saline-alkali soil by increasing soil bacterial diversity. Soil Use and Management 38, 964–977. https://doi.org/10.1111/sum.12....
 
63.
Zhao, W., Gu, C., Zhu, M., Yan, Y., Liu, Z., Feng, X., Wang, X., 2023. Chemical speciation of phosphorus in farmland soils and soil aggregates around mining areas. Geoderma 433, 116465. https://doi.org/10.1016/j.geod....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top