PL EN
PRACA ORYGINALNA
Evaluation of spectral data based soil organic carbon content estimation models in VIS-NIR
 
Więcej
Ukryj
1
, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management, University of Debrecen, Hungary
 
2
Latin America Office, Proforest, Colombia
 
Zaznaczeni autorzy mieli równy wkład w przygotowanie tego artykułu
 
 
Data nadesłania: 27-07-2023
 
 
Data ostatniej rewizji: 08-03-2024
 
 
Data akceptacji: 25-03-2024
 
 
Data publikacji online: 25-03-2024
 
 
Data publikacji: 25-03-2024
 
 
Autor do korespondencji
Andrea Szabó   

, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Water and Environmental Management, University of Debrecen, Hungary
 
 
Soil Sci. Ann., 2024, 75(1)186454
 
SŁOWA KLUCZOWE
STRESZCZENIE
The precision agriculture is a key management tool for food security, requiring rapid and cost-effective field assessment methods to support agricultural decision-making. One solution is proximal sensors that collect spectral characteristics of soils. The objective of this study was to establish models for predicting soil organic carbon (SOC) content using VIS-NIR (400–2500 nm) spectroscopy as an alternative to destructive SOC measurement methods. For the modelling, 90 soil samples were collected from 0–0.20 m depth representing the most common soil types in the Northern Great Plain (Hungary), 60 soil samples were used for calibration, and 30 soil samples for model validation. The soil samples were evaluated both chemically and physically. The estimation models were fitted based on spectral indices, and the spectral bands used for indexing were identified by principal component analysis (PCA) of reflectance. Based on the PCA results, four SOC models were set up with moderately good coefficients of determination (R2=0.47–0.61). The results demonstrated that VIS-NIR spectroscopy (especially NIR) based organic carbon content estimation models are suitable for rapid estimation of soil SOC%. This can reduce sampling costs by optimizing the number of samples to be sent to the laboratory and by identifying heterogeneous patches in the study area.
REFERENCJE (58)
1.
Allen, M., 2017. The sage encyclopedia of communication research methods (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, 1438-1440 https://doi.org/10.4135/978148....
 
2.
Babaeian, E., Sidike, P., Newcomb, M.S., Maimaitijiang, M., White, S.A., Demieville, J., Ward, R.W., Sadeghi, M., Leb-Auer, D.S., Jones, S.B., Sagan, V., Tuller, M.A., 2019. New Optical Remote Sensing Technique for High-Resolution Mapping of Soil Moisture. Frontiers in Big Data 2, 37. https://doi.org/10.3389/fdatA.....
 
3.
Banninger, D., Fluhler, H., 2004. Modelling light scattering at soil surfaces. IEEE T. Geoscience and Remote Sensing 42(7), 1462–1471. https://doi.org/10.1109/TGRS.2....
 
4.
Bartholomeus, H., Schaepman, M.E., Kooistra, L., Stevens, A., Hoogmoed, W., Spaargaren, O., 2008. Spectral reflectance-based indices for soil organic carbon quantification. Geoderma 145, 28-36. https://doi.org/10.1016/j.geod....
 
5.
Ben-Dor, E., Banin, A., 1995. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal 59, 364-372. https://doi.org/10.2136/sssaj1....
 
6.
Ben-Dor, E., Heller, D., Chudnovsky, A., 2008. A novel method of classifying soil profiles in the field using optical means. Soil Science Society of America Journal 72(4), 1113–1123. https://doi.org/10.2136/sssaj2....
 
7.
Béni, Á., Juhász, E., Ragán, P., Rátonyi, T., Várbíró, G., Fekete I., 2021. Development of soil organic matter measurement system. Soil and Water Research 3, 1-6. https://doi.org/10.17221/18/20....
 
8.
Boscaro, D., Pezzuolo, A., Sartori, L., Marinello, F., Mattioli, A., Bolzonella, D., Grigolato, S., 2018. Evaluation of the energy and greenhouse gases impacts of grass harvested on riverbanks for feeding anaerobic digestion plants. Journal of Cleaner Production 172, 4099-4109. https://doi.org/10.1016/j.jcle....
 
9.
Bowers, S.A., Hanks, R.J., 1965. Reflection of radiant energy from soil, Soil Science 100, 130-138. https://doi.org/10.1097/000106....
 
10.
Brunet, D., Barthes, B.G., Chotte, J.L., Feller C., 2007. Determination of carbon and nitrogen contents in Alfisols, Oxisols, and Ultisols and from Africa and Brazil using NIRS analysis: Effects of sample grinding and set heterogeneity. Geoderma 139, 106-117. https://doi.org/10.1016/j.geod....
 
11.
Butkute, B., Slepetiene, A., 2006. Application of near infrared reflectance spectroscopy for the assessment of soil quality in a long-term pasture. Communications in Soil Science and Plant Analysis 37, 2389-2409. https://doi.org/10.1080/001036....
 
12.
Cecillon, L.C., Barthes, B.G., Gomez, C., Ertlen, D., Genot, V., Hedde, M., Stevens, A., Burn, J.J. 2009. Assessment and monitoring of soil quality using Near-Infrared Reflectance Spectroscopy (NIRS). European Journal of Soil Science 60, 770-784. https://doi.org/10.1111/j.1365....
 
13.
Chang, C.W., Laird, D.A., Hurburgh, C.R.J., 2005. Influence of soil moisture on near-infrared reflectance spectroscopic measurement of soil properties. Soil Science 170, 244-255. https://doi.org/10.1097/01.ss.....
 
14.
Couteaux, M.M., Berg, B., Rovira, P., 2003. Near infrared reflectance spectroscopy for determination of organic matter fractions including microbial biomass in coniferous forest soils. Soil Biology and Biochemistry 35, 1587-1600. https://doi.org/10.1016/j.soil....
 
15.
Croft, H., Kuhn, N., Anderson, K., 2012. On the use of remote sensing techniques for monitoring spatiotemporal soil organic carbon dynamics in agricultural systems. CATENA 94, 64-74. https://doi.org/10.1016/j.cate....
 
16.
Dunn, B.W., Batten, G.D., Beecher, H.G., Ciavarella, S., 2002. The potential of near-infrared reflectance spectroscopy for soil analysis - a case study from the Riverine Plain of south-eastern Australia. Animal Production Science 42 (5), 607-614. https://doi.org/10.1071/EA0117....
 
17.
Filcheva, E., Tsadilas, C.D., 2002. Influence of Cliniptilolite and Compost on Soil Properties. Communications in Soil Science and Plant Analysis 33, 595-607. https://doi.org/10.1081/CSS-12....
 
18.
Ge, Y., Morgan, C.L.S., Thomasson, J.A., Waiser, T., 2007. A new perspective to near-infrared reflectance spectroscopy: A wavelet approach. Trans. ASABE 2(50), 303-311. https://doi.org/10.13031/2013.....
 
19.
Goidts, E., Van Wesemael, B., 2007. Regional assessment of soil organic carbon changes under agriculture in southern Belgium (1955–2005). Geoderma 141, 341–354. https://doi.org/10.1016/j.geod....
 
20.
Guillou, F.L., Wetterlind, W., Viscarra Rosse, A.M., Hicks, W., Grundy, M., Tuomi, S., 2015. How does grinding affect the mid-infrared spectra of soil and their multivariate calibrations to texture and organic carbon? Soil Research 53(8), 913–921. https://doi.org/10.1071/SR1501....
 
21.
Islam, K., Singh, B., McBratney, A., 2003. Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Australian Journal of Soil Research 41(6), 1101-1114. https://doi.org/10.1071/SR0213....
 
22.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
 
23.
Kalembasa, S.J., Jenkinson, D.S., 1973. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. Journal of the Science of Food and Agriculture 24, 1085–1090. https://doi.org/10.1002/jsfa.2....
 
24.
Knadel, M., Greve, M.H., Thomsen, A., 2009. VIS/NIR mapping of TOC and extent of organic soils in the Nørre Å valley. Nor-dic Association of Agricultural Scientists, 7088.
 
25.
Kononova, M. M., 1966. Soil Organic Matter Pergamon Press, 2nd edition, Oxford, 378. ISBN: 9781483185682.
 
26.
Kuang, B., Mouazen, A.M., 2013. Non-biased prediction of soil organic carbon and total nitrogen with vis–NIR spectroscopy, as affected by soil moisture content and texture. Biosystems Engineering 114 (3), 249–258. https://doi.org/10.1016/j.bios....
 
27.
Kühnel, A., Bogner, C., 2017. In-situ prediction of soil organic carbon by vis–NIR spectroscopy: an efficient use of limited field data. European Journal of Soil Science 68, 689–702. https://doi.org/10.1111/ejss.1....
 
28.
Laamrani, A., Berg, A.A., Voroney, P., Feilhauer, H., Blackburn, L., March, M., Dao, P. D., He, Y., Martin, R.C., 2019. Ensemble Identification of Spectral Bands Related to Soil Organic Carbon Levels over an Agricultural Field in Southern Ontario, Canada. Remote Sensing 11, 1298. https://doi.org/10.3390/rs1111....
 
29.
Liu, R., Pan, Y., Bao, H., Liang, S., Jiang, Y., Tu, H., Nong, J., Huang, W., 2020. Variations in Soil Physico-Chemical Properties along Slope Position Gradient in Secondary Vegetation of the Hilly Region, Guilin, Southwest China. Sustainability 12, 1303. https://doi.org/10.3390/su1204....
 
30.
Ludwig, B., Khanna, P.K., Bauhus, J., Hopmans, P., 2002. Near infrared spectroscopy of forest soils to determine chemical and biological properties related to soil sustainability. Forest Ecology and Management 171, 121-132. https://doi.org/10.1016/S0378-....
 
31.
Meersmans, J., Van Wesemael, B., Van Molle, M., 2009. Determining soil organic carbon for agricultural soils: a comparison between the Walkley and Black and the dry combustion methods (north Belgium). Soil Use and Management 25, 346–353. https://doi.org/10.1111/j.1475....
 
32.
Mendiburu, F., 2019. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-0. https://CRAN.R-project.org/pac....
 
33.
Mezősi, G., 2016. Soils of Hungary. The Physical Geography of Hungary, Akadémiai kiadó, 165-174.
 
34.
Michéli, E., Fuchs, M., Hegymegi, P., Stefanovits, P., 2006. Classification of the Major Soils of Hungary and their Correlation with the World Reference Base for Soil Resources (WRB). Agrokémia és talajtan, 55.
 
35.
Mohamed, E.S., Ali, A., El-Shirbeny, M., Abutaleb, K., Shaddad, S.M., 2020. Mapping soil moisture and their correlation with crop pattern using remotely sensed data in arid region. The Egyptian Journal of Remote Sensing and Space Science 23, 347-353. https://doi.org/10.1016/j.ejrs....
 
36.
Morón, A., Cozzolino, D., 2002. Application of near Infrared Reflectance Spectroscopy for the Analysis of Organic C, Total N and pH in Soils of Uruguay. Near Infrared Spectroscopy 10, 215-221. https://doi.org/10.1255/jnirs.....
 
37.
Nagy, A., Tamás, J., 2009. Integrated airbone and field methods to characterize soil water regime. In: Ing., A. Celková (szerk.) Transport of water, chemicals end energy in the soil-plant-atmosphere system, 412-420.
 
38.
Nagy, A., Riczu, P., Gálya, B., Tamás, J., 2014. Spectral estimation of soil water content in visible and near infra-red range. Eurasian Journal of Soil Science 3(3), 163–171. https://doi.org/10.18393/ejss.....
 
39.
Nagy, A., SZabó, A., Adeniyi, O.D., Tamás, J., 2021. Wheat Yield Forecasting for the Tisza River Catchment Using Landsat 8 NDVI and SAVI Time Series and Reported Crop Statistics. Agronomy 11, 652. https://doi.org/10.3390/agrono....
 
40.
Nagy, A., Tamás, J., Burai, P., 2007. Application of advanced technologies for the detection of pollution migration. Cereal Research Communications 35, 805-809. https://doi.org/10.1556/crc.35....
 
41.
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models, Part I–A discussion of principles. Journal of Hydrology 10, 282–290. https://doi.org/10.1016/0022-1....
 
42.
Nawar, S., Buddenbaum, H., Hill, J., Kozak, J., Mouazen, A.M., 2016. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research 155, 510–522. https://doi.org/10.1016/j.stil....
 
43.
Nduwamungu, C., Ziadi, N., Parent, L.É., Tremblay, G.F., Thurie`s, L., 2009. Opportunities for, and limitations of, near infrared reflectance spectroscopy applications in soil analysis: A review. Canadian Journal of Soil Science 89 (5), 531-541. https://doi.org/10.4141/CJSS08....
 
44.
Ogrič, M., Knadel, M., Kristianse, S.M., Peng, Y., De Jonge, L.W., Adhikari, K., Greve, M.H., 2019. Soil organic carbon pre-dictions in Subarctic Greenland by visible–near infrared spectroscopy. Antarctic, and Alpine Research 51 (1), 490-505. https://doi.org/10.1080/152304....
 
45.
Piekarczyk, J., Kazmierowski, C., Krolewicz, S., Cierniewski, J., 2016. Effect of soil surface roughness on soil reflectance measured in laboratory and outdoor conditions. Journal of Selected Topics in Applied Earth Observations and Remote Sensing and Remote Sensing 9 (2), 827–834. https://doi.org/10.1109/JSTARS....
 
46.
Ponomariova, V.V., Plotnikova, T.A., 1980. Humus and soil formation (Methods and results). Nauka, Leningrad Division.
 
47.
Russell, C.A., 2003. Sample preparation and prediction of soil organic matter properties by near infra-red reflectance spectroscopy. Communications in Soil Science and Plant Analysis 34, 1557-1572. https://doi.org/10.1081/CSS-12....
 
48.
Shi, Z., Ji W., Viscarra Rossel, A.M., Chen, S., Zhou, Y., 2015. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis–NIR spectral library. European Journal of Soil Science 66 (4), 679–687. https://doi.org/10.1111/ejss.1....
 
49.
Siebielec, G., McCarty, G.W., Stuczynski, T.I., Reeves, J.B. III., 2004. Near and mid infrared diffuse reflectance spectroscopy for measuring soil metal content. Journal of Environmental Quality 33, 2056-2069. https://doi.org/10.2134/jeq200....
 
50.
Stenberg, B., Viscarra Rossel, A.M., Mouazen, A.M., Wetterlind, J. 2010. Visible and near infrared spectroscopy in soil science. Advances in Agronomy 107, 163–215. https://doi.org/10.1016/S0065-....
 
51.
Tang, H., Qiu, J., Van Ranst, E., Li, C., 2006. Estimations of soil organic carbon storage in cropland of China based on DNDC model. Geoderma 134, 200-206. https://doi.org/10.1016/j.geod....
 
52.
Terhoeven-Urselmans, T., Schmidt, H., Joergensen, R.G., Ludwig, B., 2008. Usefulness of near-infrared spectroscopy to deter-mine biological and chemical soil properties: Importance of sample pretreatment. Soil Biology and Biochemistry 40, 1178-1188. https://doi.org/10.1016/j.soil....
 
53.
Terra, F.S., Dematte, J.A.M., Viscarra Rossel, A.M., 2015. Spectral libraries for quantitative analyses of tropical Brazilian soils: Comparing vis–NIR and mid-IR reflectance data. Geoderma 255–256, 81–93. https://doi.org/10.1016/j.geod....
 
54.
Van Waes, C., Mestdagh, I., Lootens, P., Carlier, L., 2005. Possibilities of near infrared reflectance spectroscopy for the prediction of organic carbon concentrations in grassland soils. The Journal of Agricultural Science 143, 487-492. https://doi.org/10.1017/S00218....
 
55.
Viscarra Rossel, R.A., McBratney, A.B., 2008. Diffuse Reflectance Spectroscopy as a Tool for Digital Soil Mapping, In: Digital Soil Mapping with Limited Data (eds. Hartemink et.al) Springer Science Business Media B.V., 165-172. https://doi.org/10.1007/978-1-....
 
56.
Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., Skjemstad, J.O., 2006. Visible near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59-75. https://doi.org/10.1016/j.geod....
 
57.
Walkley, A., Black, L.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37, 29–38. https://doi.org/10.1097/000106....
 
58.
Zhou, X.H., Zhou, D.W., 2009. Review of digital ground object spectral library. Guang pu xue yu guang pu fen xi = Guang pu, 29, 1616–1622. https://doi.org/10.3964/j.issn....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top