PL EN
ORIGINAL PAPER
Distribution of iron forms in different types of black earths in the Chełmno Lake District (Northern Poland) as an indicator of soil-forming process
 
More details
Hide details
1
Wydział Rolnictwa i Biotechnologii Katedra Biogeochemii i Gleboznawstwa, Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich, Polska
 
These authors had equal contribution to this work
 
 
Submission date: 2023-04-16
 
 
Final revision date: 2023-10-08
 
 
Acceptance date: 2023-12-09
 
 
Online publication date: 2023-12-09
 
 
Publication date: 2023-12-09
 
 
Corresponding author
Mateusz Pawłowski   

Wydział Rolnictwa i Biotechnologii Katedra Biogeochemii i Gleboznawstwa, Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich, Bernardyńska 6, 85-029, Bydgoszcz, Polska
 
 
Soil Sci. Ann., 2023, 74(3)176686
 
KEYWORDS
ABSTRACT
Abstract An important part of soil science research is the classification of soils. Numerous soil scientists have paid special attention to various dependencies related to the content and distribution of iron forms in the soil profile. This allows the taxonomic unit to be determined according to soil classifications. The research objective was to evaluate the distribution of iron forms as an indicator of soil-forming processes in four profiles of arable black earths. The research subject was soils formed from glacial sediments in the Chełmno Lake District (northern Poland). They were determined by morphological description to be Phaeozems representing four subtypes: Haplic Phaeozem, Luvic Gleyic Phaeozem, Gleyic Phaeozem and Gleyic (Cambic) Phaeozem. Soil horizons were described according to FAO guidelines. The soil samples were analysed for the content of free iron oxides (Fed) according to Mehra and Jackson’s method, as well as the content of amorphous iron oxides, (Feo) according to Schwertmann’s method. Based on the content of Fed and Feo, the content of crystalline iron oxides (Fec) was calculated using the formula: Fec = Fed–Feo and the iron oxides activity index was calculated from the Feo/Fed ratio. The content of Fet was highest in the Bt horizon of profile II. In individual profiles, Fed content was highest in the Bt horizon of gleyic Phaeozem and the AB horizon of gleyic (cambic) Phaeozem. In Luvic Gleyic Phaeozem and Gleyic (Cambic) Phaeozem iron was removed from the surface horizon to be accumulated in the illuvial horizon. The uniformity of content of total iron and its free iron oxides in the parent material of the analysed soils indicates its genetic homogeneity. The release of iron in the Ap horizon is characteristic of chemical weathering. The relationship between the content of Feo and Fed determines the degree of crystallization of free iron oxides. Based on the statistical analysis, a significantly positive correlation between the content of clay fraction and all the iron forms determined was found. All the profiles were characterized by similar degrees of weathering of the soil material, which was determined on the basis of the Fed/Fet ratio. The soils also demonstrate a low value of iron mobilization, as confirmed by the values of the Fed/Fet ratio. Determining iron forms and interpreting analysis results help in the correct classification of soils, because the distribution of iron forms in soil profiles depends mainly on pedogenesis.
 
REFERENCES (65)
1.
Aitkenhead, M.J., Coull, M., Towers, W., Hudson, G., Black, H.I.J., 2013. Prediction of soil characteristics and color using data from the National Soils Inventory of Scotland. Geoderma 200-201, 99-107. https://doi.org/10.1016/j.geod....
 
2.
Arduino, E., Berberis, E., Marsan, F., A., Zanini, E., Franchini, M., 1986. Iron oxides and clay minerals within profiles as indicators of soil age in Northern Italy. Geoderma 37, 45–55.
 
3.
Bednarek, R., Pokojska, U., 1996. Diagnostyczne znaczenie niektórych wskaźników chemicznych w badaniach paleopedologicznych. Mat. Konf. Metody badań paleopedologicznych i wykorzystanie gleb kopalnych w paleopedologii, 25-29.
 
4.
Bigham, J.M., Heckendorn, S.E., Jaynes, W.F., Smeck, N.E., 1991. Stability of iron oxides in two soils with contrasting colors, Soil Science Society of America Journal 55, 1485-1492. https://doi.org/10.2136/sssaj1....
 
5.
Bockheim, J.G., Gennadiyev, A.N., Hammer, R.D., Tandarich, J.P., 2005. Historical development of key concepts in pedology. Geoderma 124(1-2), 23-36. https://doi.org/10.1016/j.geod....
 
6.
Chojnicki, J., Brzozowska, A., Hryciuk, A., Marczak, R., 2010. Formy żelaza, glinu i manganu jako wskaźniki niektórych procesów glebotwórczych w glebach rezerwatu „Rybitew” Kampinoskiego Parku Narodowego, Roczniki Gleboznawcze – Soil Science Annual 61(2), 29-36.
 
7.
Cornell, R.M., Schwertman, U., 2003. The iron oxides: Structure, properties, reactions, occurance and uses. 2nd edn. VCH, Weinheim, Germany.
 
8.
Dąbkowska-Naskręt, H., Kobierski, M., Długosz, J., 1998. Characteristics of clay minerals in black earths from Kujawy region. Roczniki Gleboznawcze – Soil Science Annual 49(1/2), 45-52.
 
9.
Degórski, M., 2011. The relationships between different forms of iron and aluminium in soils as indicators of soil-cover development on India's Cherrapunji Spur (Meghalaya Plateau). Geographia Polonica 84(1), 61-73. https://doi.org/GPol.2011.1.5.
 
10.
Długosz, J., Orzechowski, M., Kobierski, M., Smólczynski, S., Zamorski, R., 2009. Clay minerals from Weichselian glaciolimnic sediments of the Sępopolska Plain (NE Poland). Goelogica Carpathica 50(3), 263-267. https://doi.org/10.2478/v10096....
 
11.
Drewnik, M., Skiba, M., Szymański, W., Żyła, M., 2014. Mineral composition vs. soil forming processes in loess soils - a case study from Kraków (southern Poland). Catena 119, 166-173. https://doi.org/10.1016/j.cate....
 
12.
Driessen, P., Deckers, J., Spaargaren, O., Nachtergaele, F.O., 2001. Lecture Notes on the Major Soils of the World. World Soil Resources Report, vol. 94. FAO, Wageningen.
 
13.
Eckmeier, E., Gerlach, R., Gehrt, E., Schmidt, M.W.I., 2007. Pedogenesis of Chernozems in central Europe - A review. Geoderma 139, 288–299. https://doi.org/10.1016/j.geod....
 
14.
Gliński, J., Stępniewska, Z., 1986. Wskaźnik odporności gleb na redukcję. Zeszyty Problemowe Postępów Nauk Rolniczych 315, 81-94.
 
15.
Gross, C.D., Harrison, R.B., 2018. Quantifying and comparing soil carbon stocks: Underestimation with the core sampling method. Soil Science Society of America Journal 82(4), 949–59. https://doi.org/10.2136/sssaj2....
 
16.
Habel, A.Y., Kaczmarek, Z., Mocek, A., 2007. Selected physical and chemical properties and the structure condition of phaeozems formed from different parent materials. Part I. Physical and chemical properties. Journal of Research and Applications in Agricultural Engineering 52(3), 45-49.
 
17.
Haidouti, C., Massas, I., 1998. Distribution of iron and manganese oxides in Haploxeralfs and Rhodoxeralfs and their relation to the degree of soil development and soil colour. Zeitschrift für Pflanzenernährung und Bodenkunde 161(2), 141-145.
 
18.
Hristov, B., 2020. Some physicochemical properties of phaeozems in Bulgaria. Forestry Ideas 26, 2(60), 520–527.
 
19.
Hu, P., Liu, Q., Torrent, J., Barrón, V., Jin, C., 2013. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth and Planetary Science Letters 369-370, 271-283. https://doi.org/10.1016/j.epsl....
 
20.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
 
21.
Jankowski, M., Kruczkowska, B., Bednarek, R., 2011. Topographical inversion of sandy soils due to local conditions in Northern Poland. Geomorphology 135 (3-4), 277-283. 10.1016/j.geomorph.2011.02.005.
 
22.
Jankowski, M., 2014a. The evidence of lateral podzolization in sandy soils of Northern Poland. Catena 112, 139–147. https://doi.org/10.1016/j.cate....
 
23.
Jankowski, M., 2014b. Bielicowanie jako wtórny proces w glebach rdzawych Brodnickiego Parku Krajobrazowego, [in:] M. Świtoniak, M. Jankowski, R. Bednarek (red.), Antropogeniczne przekształcenia pokrywy glebowej Brodnickiego Parku Krajobrazowego, Wydawnictwo Naukowe UMK, Toruń, 9-24.
 
24.
Jaworska, H., Dąbkowska-Naskręt H., Kobierski, M., 2014. The influence of litho- and pedogenic process on Luvisols formation of selected area of Vistula Glaciation. Geological Quarterly 58(4), 685-694. https://doi.org/10.7306/gq.117....
 
25.
Jaworska, H., Dąbkowska-Naskret H., Kobierski, M., 2016. Iron oxides as weathering indicator and the Origin Of Luvisols From The Vistula Glaciation Region. Journal of Soils and Sediments 16, 396-404. https://doi.org/10.1007/s11368....
 
26.
Jelić, M.Ž., Milivojević, J.Ž., Trifunović, S.R., Đalović, I.G., Milošev, D.S., Šeremešić, S.I., 2011. Distribution and forms of iron in the Vertisols of Serbia. Journal of Serbian Chemical Society 76(5), 781-794. https://doi.org/10.2298/JSC100....
 
27.
Kabała, C., 2019. Chernozem (czarnoziem) - Soil of the year 2019 in Poland. Origin, classification and properties of Chernozems in Poland. Soil Science Annual 70(3), 184-192. https://doi.org/10.2478/ssa-20....
 
28.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł., Waroszewski, J., 2019a. Polish Soil Classification, 6th edition - principles, classification scheme and correlations. Soil Science Annual 70(2), 71-97.
 
29.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., ... & Waroszewski, J., 2019. Systematyka gleb Polski. Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu.
 
30.
Kabała, C., Charzyński, P., Czigány, Sz., Novák, T.,J., Saksa, M., Świtoniak, M., 2019b. Suitability of World Reference Base for Soil Resources (WRB) to describe and classify chernozemic soils in Central Europe. Soil Science Annual 70 (3), 244-257. https://doi.org/10.2478/ssa-20....
 
31.
Kabala, C., Musztyfaga, E., Jary, Z., Waroszewski, B., Kobierski, M., 2022. Glossic planosols in the postglacial landscape of central Europe: Modern polygenetic soils or subaerial palaeosols? Geoderma 426 (15), 116101. https://doi.org/10.1016/j.geod....
 
32.
Kaczmarek, Z., Gajewski, P., Mocek, A., Owczarzak, O., Glina, B., 2015. Physical and water properties of selected Polish heavy soils of various origins. Soil Science Annual, 66(4), 191-197. https://doi.org/10.1515/ssa-20....
 
33.
Kobierski, M., 2010. Profile distribution of iron in arable soils formed on glaciall till from Inowrocławska Plain, Poland. W: Physical, chemical and biological processes in soils. Szajdak, L.,W., Karabanow, A.,K., [red] Institute for Agricultural and Forest Environment, Polish Academy of Science. Poznań, 305-322. https://doi.org/10.5601/jelem.....
 
34.
Kobierski, M., Dąbkowska-Naskręt, H., 2003. Skład mineralogiczny i wybrane właściwości fizykochemiczne zróżnicowanych typologicznie gleb Równiny Inowrocławskiej. Cz. II. Skład mineralogiczny frakcji ilastej. Roczniki Gleboznawcze – Soil Science Annual 54 (4), 29-44.
 
35.
Kobierski, M., Długosz, J., 2011. Wpływ pedogenezy na skład mineralogiczny frakcji ilastej gleb wytworzonych z gliny zwałowej. Roczniki Gleboznawcze – Soil Science Annual 62(1), 91-103.
 
36.
Kobierski, M., Kondratowicz-Maciejewska, K., Kociniewska, K., 2015. Soil quality assessment of Phaeozems and Luvisols from the Kujawy region (central Poland). Roczniki Gleboznawcze – Soil Science Annual 66(3), 111-118. https://doi.org/10.1515/ssa-20....
 
37.
Kögel-Knabner, I., Amelung, W., 2021. Soil organic matter in major pedogenic soil groups. Geoderma 384, 114785. https://doi.org/10.1016/j.geod....
 
38.
Konecka-Betley, K., Czepinska-Kamińska, D., Janowska, E., Okołowicz, M., 2002. Gleby stref: ochrony ścisłej i częściowej w Rezerwacie Biosfery Puszcza Kampinoska. Roczniki Gleboznawcze – Soil Science Annual 53(3-4), 5-21.
 
39.
Łabaz, B., Kabała, C., 2014. Origin, properties and classification of black earths in Poland. Soil Science Annual 65(2), 80-90. https://doi.org/10.2478/ssa-20....
 
40.
Łabaz, B., Kabała, C., Dudek, M., Waroszewski, J., 2019. Morphological diversity of chernozemic soils in south-western Poland. Soil Science Annal 70(3), 211-224. https://doi.org/10.2478/ssa-20....
 
41.
Łabaz, B., Musztyfaga, E., Waroszewski, J., Bogacz, A., Jezierski, P., Kabała, C., 2018. Landscape-related transformation and differentiation of Chernozems - Catenary approach in the Silesian Lowland, SW Poland. Catena, 161, 63-76. https://doi.org/10.1016/j.cate....
 
42.
Matecka, P., Świtoniak, M., 2020. Delineation, characteristic and classification of soils containing carbonates in plow horizons within young moraine areas. Soil Science Annal 71(1), 23-36. https://doi.org/10.37501/soils....
 
43.
McFadden, L.D., Hendricks, D.M., 1985. Changes in the content and composition of pedogenic iron oxyhydoxides in a chronosequence of soils in southern California. Quaternary Research 23, 189-204.
 
44.
Mocek, A., 1988. Żelazo w vertisolach i mollisolach okolic Shahrazoor i Raniya w północnowschodniej części Iraku. Roczniki Gleboznawcze – Soil Science Annual 39(3), 45-55.
 
45.
Orzechowski, M., Smólczyński, S., Długosz, J., Kalisz, B., Kobierski, M., 2018. Content and distribution of iron forms in soils formed from glaciolimnic sediments, in ne Poland. Journal of Elementology 23, 729-744. https://doi.org/10.5601/jelem.....
 
46.
Prusinkiewicz, Z., Proszek, P., 1990. Program komputerowej interpretacji wyników analizy uziarnienia gleb - TEKSTURA. Roczniki Gleboznawcze – Soil Science Annual 41(3/4), 5-16.
 
47.
Roden, E., Sobolev, D., Glazer, B., Luther, G., 2004. Potential for microscale bacterial Fe redox cycling at the aerobic–anaerobic interface. Geomicrobiology Journal 21, 379-391. https://doi.org/10.1080/014904....
 
48.
Różański, S., Bartkowiak, A., Jaworska, H., 2013. Forms of iron as an indicator of pedogenesis in profiles of selected soil types of the northern area of kujawsko-pomorskie province, Poland. Soil Science Annual 64(3), 98-105. https://doi.org/10.2478/ssa-20....
 
49.
Scheinost, A.C., Schwertmann, U., 1999. Color identification of iron oxides and hydroxysulfates: use and limitations. Soil Science Society of America Journal 63(5), 1463-1471.
 
50.
Schwertmann, U., 1964. Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Z. PFL. Ernähr Dung. Bodenk. 105, 194-202.
 
51.
Schwertmann, U., 1988. Occurrence and formation of iron oxides in various pedoinvironments. In: Iron in Soils and Clay Minerals, 261-301.
 
52.
Schwertmann, U., Teylor, R.M., 1989. Iron oxides. In: Dixon J.B. et al. (eds.). Minerals in Soil Environments. ASA. Medison, 379-438.
 
53.
Shah, A.N., Tanveer, M., Shahzad, B., Yang, G., Fahad S., Ali, S., Bukhari, M.A., Tung, S.A., Hafeez A., Souliyanonh B., 2017. Soil compaction effects on soil health and crop productivity: an overview. Environmental Science and Pollution Research 24, 10056-10067. https://doi.org/10.1007/s11356....
 
54.
Singh, J., Salaria, A., Kaul, A., 2015. Impact of soil compaction on soil physical properties and root growth: A review. International Journal of Food, Agriculture & Veterinary Sciences 5, 1, 23–32.
 
55.
Stucki, J.W., Goodman, B.A., Schwertmann, U., (Eds.), 1988. Iron in Soils and Clay Minerals. D. Reidel, Dordrecht, 893.
 
56.
Świtoniak, M., 2015. Issues relating to classification of colluvial soils in young morainic areas (Chełmno and Brodnica Lake District, northern Poland). Soil Science Annual 66(2), 57-66. https://doi.org/10.1515/ssa-20....
 
57.
Świtoniak, M., Kabała, C., Karklins, A., Charzyński, P., Hulisz, P., Mendyk, Ł., Michalski, A., Novák, T. J., Penížek, V., Reintam, E., Repe, B., Saksa, M., Vaisvalavičius, R., Waroszewski, J., 2018. Guidelines for Soil Description and Classification Central and Eastern European Students’ Version. Polish Society of Soil Science, Toruń, 1-286.
 
58.
Świtoniak, M., Mroczek, P., Bednarek, R., 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes - Case study: Brodnica and Chełmno Lake Districts (North Poland). Catena 136, 583-595. https://doi.org/10.1016/j.cate....
 
59.
Targulian, V.O., Krasilnikov, P.V., 2007. Soil system and pedogenic processes: Self-organization, time scales, and environmental significance. Catena 71(3), 373-381. https://doi.org/10.1016/j.cate....
 
60.
Thompson, A., Chadwick, O.A., Rancourt, D.G., Chorover, J., 2006. Iron-oxide crystallinity increases during soil redox oscillations. Geochimica and Cosmochimica Acta 70(7), 1710-1727. https://doi.org/10.1016/j.gca.....
 
61.
Vodyanitskii, Y.N., Kirillova, N.P., Manakhov, D.V., Karpukhin, M.M., 2018. Iron compounds and the color of soils in the Sakhalin island. Eurasian Soil Science 51(2), 163-175. https://doi.org/10.1134/S10642....
 
62.
Wiesmeier, M., Urbanski, L., Hobley, E., U., Lang, B., Lützow, M., Marin-Spiotta, E., Wesemael, B., Rabot, E., Ließ, M., Garcia-Franco, N., Wollschläger, U., Vogel, H-J., Kögel-Knabner, I., 2019. Soil organic carbon storage as a key function of soils – A review of drivers and indicators at various scales. Geoderma 333, 149–162. doi:10.1016/j.geoderma.2018.07.026.
 
63.
Wysota, W., 1993. Model kształtowania rzeźby subglacjalnej w środkowo-wschodniej części Pojezierza Chełmińsko-Dobrzyńskiego. Mat. II Seminarium: Geneza, litologia i stratygrafia utworów czwartorzędowych, Poznań.
 
64.
Zagórski, Z., 1996. Granulometryczne wskaźniki procesów pedo- i litogenezy w glebach niejednorodnych wytworzonych z osadów glacjalnych. Roczniki Gleboznawcze – Soil Science Annual 47, 125-135.
 
65.
Zhang, X.,W., Kong, L.,W., Cui, X., L., Yin, S., 2016. Occurrence characteristics of free iron oxides in soil microstructure: evidence from XRD, SEM and EDS. Bulletin of Engineering Geology and the Environment 75, 1493-1503. https://doi.org/10.1007/s10064....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top