PL EN
PRACA ORYGINALNA
Zróżnicowanie jednostek syntaksonomicznych roślinności użytków zielonych w zależności od właściwości fizykochemicznych gleb torfowych w dolinie rzeki Obry
 
Więcej
Ukryj
1
Katedra Gleboznawstwa i Mikrobiologii, Uniwersytet Przyrodniczy w Poznaniu, Polska
 
2
Katedra Łąkarstwa i Krajobrazu Przyrodniczego, Uniwersytet Przyrodniczy w Poznaniu, Polska
 
3
Katedra Geobotaniki i Planowania Krajobrazu, Uniwersytet Mikołaja Kopernika w Toruniu, Polska
 
 
Data nadesłania: 24-04-2024
 
 
Data ostatniej rewizji: 04-06-2024
 
 
Data akceptacji: 16-06-2024
 
 
Data publikacji online: 16-06-2024
 
 
Data publikacji: 12-07-2024
 
 
Autor do korespondencji
Justyna Mencel   

Katedra Gleboznawstwa i Mikrobiologii, Uniwersytet Przyrodniczy w Poznaniu, Szydłowska 50, 60-665, Poznań, Polska
 
 
Soil Sci. Ann., 2024, 75(2)190113
 
SŁOWA KLUCZOWE
STRESZCZENIE
Celem pracy było przedstawienie struktury fitosocjologicznej wybranych zbiorowisk trawiastych na płytkich glebach torfowych podlegających procesowi murszenia (humifikacji i mineralizacji torfu). Obszar badań zlokalizowany był pomiędzy północnym, środkowym i południowym kanałem rzeki Obry (Nizina Wielkopolska, centralna Polska). Badania glebowe przeprowadzono w maju i wrześniu 2022 roku, a badania fitosocjologiczne w maju i wrześniu 2022–2023 roku. Próbki gleby do analiz laboratoryjnych pobrano z najwyższych poziomów glebowych na głębokości 0–20 cm w 20 punktach badawczych. Wykonano 76 zdjęć fitosocjologicznych. Wyróżniono pięć jednostek syntaksonomicznych roślinności: Molinietum caeruleae, zbiorowisko z Poa pratensis-Festuca rubra, Arrhenatheretum elatioris, Lolio-Cynosuretum i Alopecuretum pratensis. Zbiorowiskiem o najwyższych wartościach wskaźnika różnorodności i liczbie gatunków odnotowanych w zdjęciach fitosocjologicznych było Molinietum caeruleae, podczas gdy najuboższym w gatunki z najniższym wskaźnikiem było Lolio-Cynosuretum. Gleby zostały sklasyfikowane jako Umbric Gleysols, Mollic/Umbric Gleysols, Histic Gleysols, Histic Gleysols (Murshic). Najwyższe zawartości TOC i TN odnotowano dla zbiorowiska Poa pratensis-Festuca rubra, a najniższą dla Arrhenatheretum elatioris. Wartości pH wskazywały na gleby lekko kwaśne w przypadku następujących zbiorowisk: Alopecuretum pratensis, Molinietum caeruleae, Lolio-Cynosuretum, zb. Poa pratensis-Festuca rubra oraz gleby lekko zasadowe w przypadku Arrhenatheretum elatioris. Wyniki analizy dyskryminacyjnej wykazały, że najważniejszym statystycznie istotnym czynnikiem różnicującym zbiorowiska roślinne było pH gleby mierzone zarówno w H2O, jak i w KCl. Zbiorowisko Molinietum caeruleae występowało na glebach ubogich w składniki mineralne o stosunkowo wysokim stosunku C:N. Wskaźnik różnorodności Shannona-Wienera był istotnie ujemnie skorelowany z TOC i TN. Wskazane jest dalsze utrzymywanie badanych stanowisk jako roślinności łąkowej. Zbiorowiska użytków zielonych mają szanse na przetrwanie w procesie murszenia, pod warunkiem prawidłowego użytkowania (regularnego koszenia lub wypasania i nawożenia) i regulacji stosunków wodnych. Użytki zielone, oprócz wzbogacania gleb w składniki pokarmowe, stwarzają najlepsze warunki do ograniczenia procesu rozkładu materii organicznej w poziomach akumulacyjnych i próchnicznych o charakterze murszowym, co jest niezwykle istotne w obliczu zmian klimatycznych.
REFERENCJE (120)
1.
Acic, S., Silc, U., Vrbnicanin, S., Cupac, S., Topisirovic, G., Stavretovic, N., Dajic-Stevanovic, Z., 2013. Grassland communities of Stol mountain (eastern Serbia): Vegetation and environment al relationships. Archives of Biological Sciences 65, 211–227. https://doi.org/10.2298/ABS130....
 
2.
Ameer, I. et al., 2022. Land degradation resistance potential of a dry, semiarid region in relation to soil organic carbon stocks, carbon management index, and soil aggregate stability. Land Degradation & Development 34, 624–636. https://doi.org/10.1002/ldr.44....
 
3.
Becher, M., Kalembasa, D., Pakuła, K., Malinowska, E., 2013. Frakcje węgla i azotu w odwodnionych glebach organicznych (Carbon and nitrogen fractions in drained organic soils). Environmental Protection and Natural Resources 24, 1–5. https://doi.org/10.2478/oszn-2....
 
4.
Becher, M., Tołoczko, W., Godlewska, A., Pakuła, K., Żukowski, E., 2022. Fractional Composition of Organic Matter and Properties of Humic Acids in the Soils of Drained Bogs of the Siedlce Heights in Eastern Poland. Journal of Ecological Engineering 23, 208–222. https://doi.org/10.12911/22998....
 
5.
Bengtsson, J., Bullock, J.M., Egoh, B., Everson, C., Everson, T., O’Connor, T., O’Farrell, P.J., Smith, H.G., Lindborg, R., 2019. Grasslands-more important for ecosystem services than you might think. Ecosphere 10, e02582. https://doi.org/10.1002/ecs2.2....
 
6.
Berglund, Ö., Berglund, K., 2010. Distribution and cultivation intensity of agricultural peat and gyttja soils in Sweden and estimation of greenhouse gas emissions from cultivated peat soils. Geoderma 154, 173–180. https://doi.org/10.1016/j.geod....
 
7.
Bieniek, A., Łachacz, A., 2012. Evolution of mucky soils in the sandy outwash landscape, [In:] Selected Problems of Wetland Conservation. Uniwersytet Warmińsko-Mazurski w Olsztynie, Olsztyn, pp. 111–131.
 
8.
Bieniek, B., Bieniek, A., Helinska, A., 2005. Mineralization of organic nitrogen compounds in mucky soils under different utilization. Zeszyty Problemowe Postępów Nauk Rolniczych 505, 69–75.
 
9.
Boonman, C.C.F. et al., 2021. Plant functional and taxonomic diversity in European grasslands along climatic gradients. Journal of Vegetation Science 32, e13027. https://doi.org/10.1111/jvs.13....
 
10.
Borana, H., Kumhar, B.L., Kumhar, D.L., Jakhar, S.R., 2023. Grass based cropping system source or sink for carbon sequestration to mitigate changing climate: A review. The Pharma Innovation Journal 12, 582–590.
 
11.
Borek, R., 2020. Evaluation of the potential of Rural Development Programme measures for greenhouse gas emission reduction in polish agriculture. The Issues of Agricultural Advisory Service 4, 20–23.
 
12.
Brągiel, P., Trąba, C., Rogut, K., 2016. Differentiation of meadows belonging to Arrhenatheretum elatioris association included in the environmental management scheme in the area of Bukowskie Foothills. Grassland Science in Poland 19, 51–66.
 
13.
Braun-Blanquet, J., 1964. Pflanzensoziologie; Grundzüge der Vegetationskunde. Springer-Verlag Wien, New York.
 
14.
Burczyk, P., Gamrat, R., Gałczyńska, M., Saran, E., 2018. The role of grasslands in providing ecological sustainability of the natural environment. Water-Environment-Rural Areas 18, 21–37.
 
15.
Chmolowska, D., Nobis, M., Rożej-Pabijan, E., Grześ, I.M., Radzikowski, P., Okrutniak, M., Celary, W., Sternalski, J., Shrubovych, J., Wasak-Sęk, K., 2023. Matching the puzzle piece to a new jigsaw: The effect of surrounding environments on plants and invertebrates in the translocated wet meadow. Science of The Total Environment 904, 166637. https://doi.org/10.1016/j.scit....
 
16.
Chytrý, M. et al., 2007. Plant species richness in continental southern Siberia: effects of pH and climate in the context of the species pool hypothesis. Global Ecology and Biogeography 16, 668–678. https://doi.org/10.1111/j.1466....
 
17.
Council Directive, 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. https://eur-lex.europa.eu/lega... (16.04.2024).
 
18.
Czyż, H., Malinowski, R., Kitczak, T., Przybyszewski, A., 2013. Chemical Characteristics of Soils and Vegetation Cover of Grasslands in the Warta Estuary Valley. Annual Set The Environment Protection 15, 694–713.
 
19.
Dawson, Q., Kechavarzi, C., Leeds-Harrison, P.B., Burton, R.G.O., 2010. Subsidence and degradation of agricultural peatlands in the Fenlands of Norfolk, UK. Geoderma 154, 181–187. https://doi.org/10.1016/j.geod....
 
20.
Deng, L., Wang, K., Li, J., Zhao, G., Shangguan, Z., 2016. Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the Loess Plateau, China. Ecological Engineering 94, 525–531. https://doi.org/10.1016/j.ecol....
 
21.
Diviaková, A., Stašiov, S., Pondelík, R., Pätoprstý, V., Novikmec, M., 2021. Environmental and Management Control over the Submontane Grassland Plant Communities in Central Slovakia. Diversity 13, 30. https://doi.org/10.3390/d13010....
 
22.
Dumont, B., Franca, A., Lopez-i-Gelats, F., Mosnier, C., Pauler, C.M., 2022. Diversification increases the resilience of European grassland-based systems but is not a one-size-fits-all strategy. Grass and Forage Science 77, 247–256.
 
23.
Freitag, M. et al., 2023. Increasing plant species richness by seeding has marginal effects on ecosystem functioning in agricultural grasslands. Journal of Ecology 111, 1968–1984. https://doi.org/10.1111/1365-2....
 
24.
Glina, B., Bogacz, A., Bojko, O., Kordyjarek, M., 2013. Diversity of soils in the peatland located on slope near Karłów (Stołowe Mountain National Park). Episteme 3, 287–296.
 
25.
Glina, B., Piernik, A., Hulisz, P., Mendyk, Ł., Tomaszewska, K., Podlaska, M., Bogacz, A., Spychalski, W., 2019a. Water or soil—What is the dominant driver controlling the vegetation pattern of degraded shallow mountain peatlands? Land Degradation & Development 30, 1437–1448. https://doi.org/10.1002/ldr.33....
 
26.
Glina, B., Sykuła, M., Mendyk, Ł., 2019b. Land use changes and landscape pattern dynamics of a peatland area under diversified human impact: the Grójec Valley (Central Poland). Bulletin of Geography. Physical Geography Series 16, 21–30. https://doi.org/10.2478/bgeo-2....
 
27.
Gonet, S., Smal, H., Chojnicki, J., 2015. Właściwości chemiczne gleb (Chemical properties of soils), [In:] Gleboznawstwo. PWN, pp. 189–231.
 
28.
Grzegorczyk, S., 2016. The role of grassland ecosystems in environmental management. Zeszyty Problemowe Postępów Nauk Rolniczych 586, 19–32.
 
29.
Grzywna, A., 2014. Evaluation of nutrient abundance in peat-muck soils of the Tyśmienica river basin. Water-Enviroment- Rural Areas 14, 19–26.
 
30.
Guo, Y., Liao, H.-L., Boughton, E.H., Martens-Habbena, W., 2023. Effects of land-use intensity, grazing and fire disturbances on soil bacterial and fungal communities in subtropical wetlands. Agriculture, Ecosystems & Environment 345, 108314. https://doi.org/10.1016/j.agee....
 
31.
GUS, 2023. Statistical Yearbook of Agriculture. https://stat.gov.pl/obszary-te... (16.05.2024).
 
32.
Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4, 9.
 
33.
Hennekens, S.M., Schaminée, J.H.J., 2001. Turboveg, a Comprehensive Data Base Management System for Vegetation Data. Journal of Vegetation Science 12, 589–591. https://doi.org/10.2307/323701....
 
34.
Ilnicki, P., Szajdak, L., 2016. Peatland disappearance. Wydawnictwo Polskiego Towarzystwa Przyjaciół Nauk, Poznań.
 
35.
IMGW PIB, 2022. Meteorological Yearbook 2022. IMGW PIB, Warszawa.
 
36.
ISO 10381-1:2002, 2002. Soil Quality—Sampling—Part 1: Guidance on the Design of Sampling Programs; International Organization for Standardization. Geneva, Switzerland.
 
37.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
 
38.
Janišová, M., Uhliarová, E., Ružičková, H., 2010. Expert system-based classification of semi-natural grasslands in submontane and montane regions of central Slovakia. Tuexenia 30, 375–422.
 
39.
Jankowska-Huflejt, H., 2007. The agro-environmental importance of permanent grasslands. Problemy Inżynierii Rolniczej 1, 23–34.
 
40.
Jodłowski, J., 2003. Szczegółowa Mapa Geologiczna Polski (Detailed Geological Map of Poland), 1:50000. Wolsztyn (540). PIG, Warsaw, Poland.
 
41.
Jurasinski, G. et al., 2020. From Understanding to Sustainable Use of Peatlands: The WETSCAPES Approach. Soil Systems 4, 14. https://doi.org/10.3390/soilsy....
 
42.
Kabała, C. et al., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70, 71–97. https://doi.org/10.2478/ssa-20....
 
43.
Kącki, Z., Michalska-Hejduk, D., 2010. Assessment of Biodiversity in Molinia Meadows in the Kampinoski National Park Based on Biocenotic Indicators. Polish Journal of Environmental Studies 19, 351–362.
 
44.
Khalil, M.I., Cordovil, C.M. d. S., Francaviglia, R., Beverley, H., Klumpp, K., Koncz, P., Llorente, M., Madari, B.E., Muñoz-Rojas, M., Nerger, R., 2021. Grasslands. In Recarbonizing global soils: A technical manual of recommended sustainable soil management. FAO, Italy. https://doi.org/10.4060/cb6595....
 
45.
Klarzyńska, A., Kryszak, A., 2015. Causes and directions of changes of meadow-pasture vegetations of the Wielki Łęg Obrzański (WŁO). Steciana 18, 67–75. https://doi.org/10.12657/steci....
 
46.
Klarzyńska, A.A., Kryszak, A., 2015. Floristic diversity of extensively used fresh meadows (6510) in the Wielki Łęg Obrzański complex. Acta Agrobotanica 115–123. https://doi.org/10.5586/aa.201....
 
47.
Kopeć, M., Zarzycki, J., Gondek, K., 2010. Species diversity of submontane grasslands : effects of topographic and soil factors. Polish Journal of Ecology 58, 285–295.
 
48.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259–263. https://doi.org/10.1127/0941-2....
 
49.
Kozłowski, S., Zielewicz, W., Swędrzyński, A., Olejarnik, Ł., 2012. Chemical properties of forest grasses. Grassland Science in Poland 15, 109–118.
 
50.
Krüger, J.P., Leifeld, J., Glatzel, S., Szidat, S., Alewell, C., 2015. Biogeochemical indicators of peatland degradation – a case study of a temperate bog in northern Germany. Biogeosciences 12, 2861–2871. https://doi.org/10.5194/bg-12-....
 
51.
Kryszak, A., Kryszak, J., Czemko, M., 2005. The degradation of meadows communities in Samica River Valley. Ecological Engineering & Environmental Technology 12, 131–132.
 
52.
Kryszak, A., Kryszak, J., Klarzyńska, A.A., Strychalska, A., 2009. Influence of expansiveness of select plant species on floristic diversity of meadow communities. Polish Journal of Environmental Studies 18, 1203–1210.
 
53.
Krzysztofka, M., 1993. Szczegółowa Mapa Geologiczna Polski (Detailed Geological Map of Poland), 1:50000. Kościan (542). PIG, Warsaw, Poland.
 
54.
Kumar, V., Sharma, K.R., Sharma, V., Arya, V.M., Kumar, R., Singh, V.B., Kumar Sinha, B., Singh, B., 2017. Soil Quality Refurbishment through Carbon Sequestration in Climate Change: A Review. International Journal of Current Microbiology and Applied Sciences 6, 1210–1223. https://doi.org/10.20546/ijcma....
 
55.
Kun, R., Babai, D., Csathó, A.I., Vadász, C., Kálmán, N., Máté, A., Malatinszky, Á., 2021. Simplicity or complexity? Important aspects of high nature value grassland management in nature conservation. Biodivers Conserv 30, 3563–3583. https://doi.org/10.1007/s10531....
 
56.
Łachacz, A., Kalisz, B., Sowiński, P., Smreczak, B., Niedźwiecki, J., 2023. Transformation of Organic Soils Due to Artificial Drainage and Agricultural Use in Poland. Agriculture 13, 634. https://doi.org/10.3390/agricu....
 
57.
Lal, R., 2020. Managing soils for negative feedback to climate change and positive impact on food and nutritional security. Soil Science and Plant Nutrition 66, 1–9. https://doi.org/10.1080/003807....
 
58.
Lisec, U., Prevolnik Povše, M., Gselman, A., Kramberger, B., 2024. Sustainable Grassland-Management Systems and Their Effects on the Physicochemical Properties of Soil. Plants 13, 838. https://doi.org/10.3390/plants....
 
59.
Liu, H., Price, J., Rezanezhad, F., Lennartz, B., 2020. Centennial‐Scale Shifts in Hydrophysical Properties of Peat Induced by Drainage. Water Resources Research 56, e2020WR027538. https://doi.org/10.1029/2020WR....
 
60.
Liu, L. et al., 2023. The grassland carbon cycle: Mechanisms, responses to global changes, and potential contribution to carbon neutrality. Fundamental Research 3, 209–218. https://doi.org/10.1016/j.fmre....
 
61.
Marciniuk, P., Marciniuk, J., Sychut-Czapla, E., Oklejewicz, K., 2016. Meadows of the Molinietalia order as a refugium of rare plant species in the Nadhużański Landscape Park (F. Poland). Fragmenta Floristica et Geobotanica Polonica 23, 73–81.
 
62.
Mashiane, K.K., Ramoelo, A., Adelabu, S., Daemane, E., 2023. Estimating mountainous plant species richness and diversity for monitoring global change in a protected grassland park. African Journal of Ecology 61, 636–644. https://doi.org/10.1111/aje.13....
 
63.
Matuszkiewicz, W., 2023. Guide to the identification of plant communities of Poland. PWN, Warsaw (in Polish).
 
64.
Mencel, J., Futa, B., Mocek-Płóciniak, A., Mendyk, Ł., Piernik, A., Kaczmarek, T., Glina, B., 2022a. Interplay between Selected Chemical and Biochemical Soil Properties in the Humus Horizons of Grassland Soils with Low Water Table Depth. Sustainability 14, 16890. https://doi.org/10.3390/su1424....
 
65.
Mencel, J., Mocek-Płóciniak, A., Kryszak, A., 2022b. Soil Microbial Community and Enzymatic Activity of Grasslands under Different Use Practices: A Review. Agronomy 12, 1136. https://doi.org/10.3390/agrono....
 
66.
Merunková, K., Chytrý, M., 2012. Environmental control of species richness and composition in upland grasslands of the southern Czech Republic. Plant Ecology 213, 591–602. https://doi.org/10.1007/s11258....
 
67.
Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, Ü., Zhang, L., Anderson, C.J., Jørgensen, S.E., Brix, H., 2013. Wetlands, carbon, and climate change. Landscape Ecology 28, 583–597. https://doi.org/10.1007/s10980....
 
68.
Nguyen, M.-H., 2022. Plant diversity is crucial for grassland ecosystem multifunctionality. https://doi.org/10.31219/osf.i....
 
69.
Nicia, P., Bejger, R., Zadrożny, P., Sterzyńska, M., 2018. The impact of restoration processes on the selected soil properties and organic matter transformation of mountain fens under Caltho-Alnetum community in the Babiogórski National Park in Outer Flysch Carpathians, Poland. Journal of Soils and Sediments 18, 2770–2776. https://doi.org/10.1007/s11368....
 
70.
Okruszko, H., 1993. Transformation of fen-peat soils under the impact of draining. Zeszyty Problemowe Postępów Nauk Rolniczych 406, 3–73.
 
71.
Oleszczuk, R., Gąsowska, M., Guz, G., Urbański, J., Hewelke, E., 2017. The influence of subsidence and disappearance of organic moorsh soils on longitudinal sub-irrigation ditch profiles. Acta Scientiarum Polonorum Formatio Circumiectus 3, 3–13. https://doi.org/10.15576/ASP.F....
 
72.
Oleszczuk, R., Łachacz, A., Kalisz, B., 2022. Measurements versus Estimates of Soil Subsidence and Mineralization Rates at Peatland over 50 Years (1966–2016). Sustainability 14, 16459. https://doi.org/10.3390/su1424....
 
73.
Palpurina, S. et al., 2017. The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography 26, 425–434. https://doi.org/10.1111/geb.12....
 
74.
Pawłowski, B., 1977. Sklad i budowa zbiorowisk roslinnych oraz metody ich badania (Composition and structure of plant communities and methods of their study), [In:] Szafer, W. and Zarzycki, K. Eds., Szata Roślinna Polski. PWN, Warszawa.
 
75.
Pawluczuk, J., Stępień, A., Alberski, J., 2019. Physical and chemical properties of organic soils in connection with habitat conditions and the land use in the Dolina Rzeki Pasłęki Natura 2000 Site. Journal of Elementology 24, 437–447. https://doi.org/10.5601/jelem.....
 
76.
Pikuła, D., 2019. Praktyki zapobiegające stratom węgla organicznego z gleby (Practices to prevent organic carbon loss from soil). Studia i Raporty IUNG-PIB 59, 77–91. https://doi.org/10.26114/SIR.I....
 
77.
Plante, A.F., Fernández, J.M., Haddix, M.L., Steinweg, J.M., Conant, R.T., 2011. Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biology and Biochemistry 43, 1051–1058. https://doi.org/10.1016/j.soil....
 
78.
Pruchniewicz, D., Żołnierz, L., Dradrach, A., 2024. The Influence of Surrounding Arable Fields on the Species Diversity and Composition of Isolated Mountain Mesic Grassland Patches. Agriculture 14, 180. https://doi.org/10.3390/agricu....
 
79.
Riesch, F., Stroh, H.G., Tonn, B., Isselstein, J., 2018. Soil pH and phosphorus drive species composition and richness in semi-natural heathlands and grasslands unaffected by twentieth-century agricultural intensification. Plant Ecology & Diversity 11, 239–253. https://doi.org/10.1080/175508....
 
80.
Roth, T., Kohli, L., Rihm, B., Achermann, B., 2013. Nitrogen deposition is negatively related to species richness and species composition of vascular plants and bryophytes in Swiss mountain grassland. Agriculture, Ecosystems & Environment 178, 121–126. https://doi.org/10.1016/j.agee....
 
81.
Rozbrojová, Z., Hájek, M., Hájek, O., 2010. Vegetation diversity of mesic meadows and pastures in the West Carpathians. Preslia 82, 307–332.
 
82.
Sammel, A., Niedźwiecki, E., 2006. The content of macro- and microelements in muckous soils within the Odra Floodplain. Water-Environment-Rural Areas 6, 293–304.
 
83.
Sapek, A., Sapek, B., 1997. Methods of chemical analysis of organic soils. IMUZ, Falenty (in Polish).
 
84.
Scholtz, R., Twidwell, D., 2022. The last continuous grasslands on Earth: Identification and conservation importance. Conservat Sci and Prac 4, e626. https://doi.org/10.1111/csp2.6....
 
85.
Shannon, C.E., Weaver, W., 1949. A Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
 
86.
Šmilauer, P., Lepš, J., 2014. Multivariate analysis of ecological data using CANOCO 5. Cambridge University Press.
 
87.
Smith, P., 2014. Do grasslands act as a perpetual sink for carbon? Global Change Biology 20, 2708–2711. https://doi.org/10.1111/gcb.12....
 
88.
Smreczak, B., Niedźwiecki, J., Jadczyszyn, J., Łysiak, M., 2020. Current status of drained meadow soils made of low peat - pilot study. Studies and Reports IUNG-PIB 64, 61–75. https://doi.org/10.26114/SIR.I....
 
89.
Smreczak, B., Ukalska-Jaruga, A., 2021. Dissolved organic matter in agricultural soils. Soil Science Annual 72, 132234. https://doi.org/10.37501/soils....
 
90.
Soons, M.B., Hefting, M.M., Dorland, E., Lamers, L.P.M., Versteeg, C., Bobbink, R., 2017. Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus. Biological Conservation 212, 390–397. https://doi.org/10.1016/j.bioc....
 
91.
Stamirowska-Krzaczek, E., 2015. The occurrence of Poa pratensis-Festuca rubra community in terms of negligence in the use of meadows. Agronomy Science 70, 61–72. https://doi.org/10.24326/as.20....
 
92.
Stypiński, P., Mastalerczuk, G., Pietkiewicz, S., 2005. The role of grassland in reduction of greenhouse effect. Ecological Engineering & Environmental Technology 12, 77–78.
 
93.
Suder, A., 2007. Vegetation of wet meadows (order Molinietalia caeruleae W. Koch 1926) in the eastern part of Silesia Upland. Grassland Science in Poland 10, 159–172.
 
94.
Swacha, G., Botta-Dukát, Z., Kącki, Z., Pruchniewicz, D., Żołnierz, L., 2018. The effect of abandonment on vegetation composition and soil properties in Molinion meadows (SW Poland). PLoS ONE 13, e0197363. https://doi.org/10.1371/journa....
 
95.
Świtoniak, M., Kabała, C., Charzyński, P., 2016. Proposal of English equivalents for the soil taxa names in the Polish Soils Classification. Soil Science Annual 67, 103–116. https://doi.org/10.1515/ssa-20....
 
96.
Sykuła, M., 2020. Changes in the range of organic soils in young glacial landscapes in the second part of the XXth century (PhD dissertation). Nicolaus Copernicus University in Toruń, Toruń (in Polish).
 
97.
Szałajdewicz, J., 2004. Szczegółowa Mapa Geologiczna Polski (Detailed Geological Map of Poland), 1:50000. Rakoniewice (541). PIG, Warsaw, Poland.
 
98.
ter Braak, C.J.F., Šmilauer, P., 2012. CANOCO Reference manual and User’s guide: Software Ordination (version 5.0). Biometrics, Wageningen, České Budějowice.
 
99.
Tian, Q. et al., 2016. A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology 97, 65–74. https://doi.org/10.1890/15-091....
 
100.
Tichý, L., Holt, J., Nejezchlebová, M., 2011. JUICE program for management, analysis and classification of ecological data. 2nd Edition of the Program Manual. 2nd part. Vegetation Science Group, Masaryk University Brno, Czech Republic.
 
101.
Trąba, C., Wolański, P., 2012. Floristic diversity of meadows communities representing Molinion, Cnidion dubii and Filipendulion alliances in Poland – threats and protection. Inżynieria Ekologiczna 29, 224–235.
 
102.
Trąba, C., Wolański, P., Oklejewicz, K., 2008. Floristic diversity and sward use value of Lolio-Cynosuretum association in the San river valley. Annales Universitatis Mariae Curie-Sklodowska 63, 67–73.
 
103.
Turbiak, J., 2013. Assessment of organic mass loss in mucky soil based on measurements of CO2 emission fluxes. Water-Environment-Rural Areas 13, 147–159.
 
104.
Velev, N., 2018. Arrhenatheretalia elatioris uncritical checklist of Europe. Phytologia Balcanica 24, 99–147.
 
105.
Wallor, E., Zeitz, J., 2016. How properties of differently cultivated fen soils affect grassland productivity — A broad investigation of environmental interactions in Northeast Germany. Catena 147, 288–299. https://doi.org/10.1016/j.cate....
 
106.
Warda, M., Stamirowska-Krzaczek, E., 2010. Evaluation of the sward value and the moisture and trophicity of habitats of selected grassland communities of the class Molinio-Arrhenatheretea in the Nadwieprzański Landscape Park. Grassland Science in Poland 13, 183–195.
 
107.
Wellstein, C., Otte, A., Waldhardt, R., 2007. Impact of site and management on the diversity of central European mesic grassland. Agriculture, Ecosystems & Environment 122, 203–210. https://doi.org/10.1016/j.agee....
 
108.
Wilsey, B.J., 2018. Biodiversity of Grasslands, [In:] The Biology of Grasslands. Oxford University Press, pp. 15–39.
 
109.
Withey, P., Van Kooten, G.C., 2011. The effect of climate change on optimal wetlands and waterfowl management in Western Canada. Ecological Economics 70, 798–805. https://doi.org/10.1016/j.ecol....
 
110.
Wójciak, H., Bieniek, B., 2005. Properties of the organic metter in muck and mucky soils from Siódmak peatland. Ecological Engineering & Environmental Technology 12, 321–322.
 
111.
Wójcik, T., Janicka, M., 2016. Current state and changes in Molinion meadows from Kostrze environs in Kraków. Ecological Questions 23, 15. https://doi.org/10.12775/EQ.20....
 
112.
Wójcik, T., Kostrakiewicz-Gierałt, K., Makuch-Pietraś, I., 2022. The effect of accidental burning on habitat conditions and species composition of Molinion caeruleae meadows. Journal for Nature Conservation 70, 126294. https://doi.org/10.1016/j.jnc.....
 
113.
Wróbel, B., Świechowska, I., Krupa, A., 2021. The Production-Related and Natural Aspects of the Use of Meadows and Pastures in Organic Farms. Agricultural Advisory Centre in Brwinów, Poznań, Polska.
 
114.
Wróbel, B., Terlikowski, J., Weso, P., Barszczewski, J., 2015. Rational Use of Lowland Meadows. ITP. Falenty. 24.
 
115.
Wróbel, M., 2012. Zróżnicowanie roślinności na gruntach nieużytkowanych rolniczo w gospodarstwach realizujących program rolnośrodowiskowy na Nizinie Szczecińskiej (Vegetation diversity on land not used for agriculture in farms implementing the agri-environmental program in the Szczecin Lowlands). Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego, Szczecin.
 
116.
Xu, J., Morris, P.J., Liu, J., Holden, J., 2018. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. CATENA 160, 134–140. https://doi.org/10.1016/j.cate....
 
117.
Yang, Z., Baoyin, T., Li, F.Y., 2020. Long-term effects of restoration measures on soil C and C: nutrient ratios in a semiarid steppe. Ecological Engineering 153, 105913. https://doi.org/10.1016/j.ecol....
 
118.
Zając, E., Zarzycki, J., Ryczek, M., 2018. Degradation of peat surface on an abandoned post-extracted bog and implications for re-vegetation. Applied Ecology and Environmental Research 16, 3363–3380. https://doi.org/10.15666/aeer/....
 
119.
Zelnik, I., Čarni, A., 2008. Wet meadows of the alliance Molinion and their environmental gradients in Slovenia. Biologia 63, 187–196. https://doi.org/10.2478/s11756....
 
120.
Zhao, Y. et al., 2023. Soil organic matter enhances aboveground biomass in alpine grassland under drought. Geoderma 433, 116430. https://doi.org/10.1016/j.geod....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top