PL EN
PRACA ORYGINALNA
Delimitacja konturów, właściwości i pozycja systematyczna gleb zawierających węglan wapnia w poziomach ornych w obszarach młodoglacjalnych
 
Więcej
Ukryj
1
Nicolaus Copernicus University in Toruń, Department of Soil Science and Landscape Management, 1 Lwowska Str., 87-100 Toruń
 
 
Data nadesłania: 24-07-2019
 
 
Data akceptacji: 31-01-2020
 
 
Data publikacji online: 19-05-2020
 
 
Data publikacji: 19-05-2020
 
 
Soil Sci. Ann., 2020, 71(1), 23-36
 
SŁOWA KLUCZOWE
STRESZCZENIE
Erozja gleb prowadzi do spłycenia profilu glebowego i zmian właściwości fizycznych, chemicznych oraz cech morfologicznych gleby. Odsłanianie głębszych partii gleby wywołuje też zmianę barwy poziomów powierzchniowych, co znajduje swoje odzwierciedlenie na zdjęciach lotniczych. Szczególnie narażone na przekształcenia erozyjne są obszary rolnicze, w których intensywna działalność człowieka prowadzi do wzmożenia naturalnych procesów stokowych oraz przemieszczania materiału glebowego przez maszyny i narzędzia rolnicze, co nazywane jest denudacją antropogeniczną. Obszar badań – gmina Chełmża (powiat toruński) leży w obrębie wysoczyzny morenowej pagórkowatej i płaskiej, zbudowanej z glin zwałowych ostatniego zlodowacenia. Intensywne użytkowanie rolnicze połączone ze znacznymi deniwelacjami terenu spowodowało ogłowienie gleb płowych, które dominują na analizowanym obszarze. Największe przekształcenia można zaobserwować na szczytach pagórków wysoczyznowych, gdzie poziom orny analizowanych gleb wymieszany jest ze skałą macierzystą bogatą w węglan wapnia. W celu wyznaczenia zasięgu gleb, które zawierają węglan wapnia w poziomach ornych przeanalizowano ogólnodostępne ortofotomapy oraz materiały kartograficzne w postaci map topograficznych i numerycznego modelu terenu. Na podstawie przyjętego klucza fotointerpretacyjnego wyznaczono ponad 700 konturów gleb potencjalnie zasobnych w całym profilu w węglan wapnia, stanowiących około 1% powierzchni analizowanego obszaru. Przy ich wyznaczaniu wzięto pod uwagę: 1) bardzo jasną barwę poziomów powierzchniowych, 2) występowanie w miejscach eksponowanych na erozję – na wierzchowinach pagórków i w obrębie wypukłych stoków, 3) otoczenie pierścieniami silnie zerodowanych gleb płowych odznaczających się barwą ciemnobrązową poziomów ornych i wskazującą na odsłonięcie poziomów argik. Badania terenowe i laboratoryjne pozwoliły na weryfikację wyznaczonych zasięgów gleb zerodowanych zasobnych w węglan wapnia. Potwierdziły one wysoką przydatność ogólnodostępnych zdjęć lotniczych, ponieważ 96% wyznaczonych na ich podstawie konturów reprezentowało gleby bardzo silnie zerodowane (Apk-Ck) i zawierało węglan wapnia w poziomach ornych. Średnia zawartość CaCO3 w poziomach ornych wyniosła 6,1%. Poziomy próchniczne nie spełniały kryteriów barwy i (lub) zawartości węgla organicznego wymaganego dla poziomów mollik, a skały macierzyste miały zbyt małą zawartość węglanu wapnia dla wydzielenia poziomów kalcik. Według Systematyki gleb Polski z 2019 r. większość analizowanych gleb można zaklasyfikować jako regosole. W jednym przypadku ze względu na silne oglejenie, profil glebowy zaklasyfikowano jako glebę gruntowo-glejową. Przegląd archiwalnych materiałów dotyczących gleb zerodowanych bogatych w węglan wapnia wskazuje też na możliwość wystąpienia w grupie tych gleb czarnoziemów, czarnych ziem i gleb opadowo-glejowych zawierających poziomy mollik i/lub kalcik.
 
REFERENCJE (66)
1.
Bednarek, R., Prusinkiewicz, Z. 1997. Geografia gleb, Warszawa, 287 ss.
 
2.
Bednarek, R., Szrejder B., 2004. Struktura pokrywy glebowej zlewni reprezentatywnej Strugi Toruńskiej, [w:] Kejna, M., Uscka, A., [red.] Zintegrowany Monitoring Środowiska Przyrodniczego. Funkcjonowanie i monitoring geosystemów w warunkach narastającej antropopresji. Biblioteka Monitoringu Środowiska, Toruń, 243–252.
 
3.
Bednarek, R., Jankowski, M., 2006. Gleby. [w:] Toruń i jego okolice: monografia przyrodnicza, Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń.
 
4.
Bednarek, R., Dąbrowski, M., Świtoniak, M., 2009. Antropogeniczne przekształcenia pokrywy glebowej gminy Jeżewo. Zeszyty Problemowe Postępów Nauk Rolniczych 540, Warszawa, 139–146.
 
5.
Białousz, S., 1978. Zastosowanie fotointerpretacji do wykonywania map stosunków wodnych gleb. PTG, Prace Komisji Naukowych 35, 1–143.
 
6.
Białousz, S., Mirosz, K., Simla, M., 1978. Wpływ wilgotności gleby na zróżnicowanie tonu zdjęcia lotniczego [w:] Fotointerpretacja w geografii, 12, 111–116.
 
7.
Buringh, P., 1970. Introduction to the study of soils in tropical and subtropical regions PUDOC, Wageningen.
 
8.
Chudecki, Z., 1960. Materiały do badań nad erozją gleb na Pomorzu Zachodnim, Roczniki nauk rolniczych 74, F2, 417–432.
 
9.
Chudziak, W., 1990. Wczesnośredniowieczny zespół osadniczy w rejonie Gronowa, woj. toruńskie (w świetle badań w latach 1987–1989), [w:] Studia nad osadnictwem średniowiecznym ziemi chełmińskiej. Gronowski mikroregion osadniczy. Inst. Archeol. i Etnogr. UMK w Toruniu, Toruńskie Towarzystwo Kultury, Toruń, 44–68.
 
10.
Dąbrowski, M., Bednarek, R., Piziur, A., Wilk M., 2018. Agricultural areas in the moraine plateau with glacial curvilineations (Dobrzyń Lakeland, Poland). [In:] Świtoniak, M., Charzyński, P., [Eds.] Soil sequences atlas IV. Machina Druku, Toruń, 213–228.
 
11.
De Alba, S., Lindstrom, M., Schumacher, T.E., Malo D.D., 2004. Soil landscape evolution due to soil redistribution by tillage: a new conceptual model of soil catena evolution in agricultural landscapes. Catena 58, 77–100. https://doi.org/10.1016/j.cate....
 
12.
Deumlich, D., Schmidt, R., Sommer, M., 2010. A multiscale soil–landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes. Journal of Plant Nutrition and Soil Sciences 173, 843–851. https://doi.org/10.1002/jpln.2....
 
13.
Deumlich, D., Ellerbrock, R.H., Frielinghaus, Mo. 2018. Estimating carbon stocks in young moraine soils affected by erosion. Catena 162, 51 – 60.
 
15.
Dreibrodt, S., Lubos, C., Terhorst, B., Damm, B., Bork, H.-R., 2010. Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. Quaternary International, 222, 80–95. https://doi.org/10.1016/j.quai....
 
16.
Evans, R., 1993. On assessing accelerated erosion of arable land by water. Soils and Fertilisers 56 (11), 1285–1293.
 
17.
Gacki, T., Gołębiewski, R., 1977. Fotointerpretacja erozji gleb obszarów młodoglacjalnych na przykładzie zlewni górnej Raduni. Fotointerpretacja w geografii 10, 102–113.
 
18.
IUSS Working Group WRB, 2015. World Reference Base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Report No. 106. FAO, Rome.
 
19.
Izydorski, Ł., 2016. The impact of anthropogenic denudation on trophism of soils of morainic plateau in the vicinity of Wąbrzeźno. Master's thesis manuscript - under the supervision of Renata Bednarek. Department of Soil Science and Landscape Management, NCU in Toruń (in Polish).
 
20.
Józefaciuk, C., Józefaciuk, A., 1996. The erosion mechanisms and methodological indicators for the research on erosion. Environmental Monitoring Library, (in Polish).
 
21.
Józefaciuk, A., Józefaciuk, C., 1999. Ochrona gruntów przed erozją. Wyd. IUNG Puławy, 109 ss.
 
22.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł., Waroszewski, J., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual, 70, 2, 71–97. https://doi.org/10.2478/ssa-20....
 
23.
Kittel, P., 2014. Slope deposits as an indicator of anthropopressure in the light of research in Central Poland. Quaternary International 324, 34–55. https://doi.org/10.1016/j.quai....
 
24.
Klimowicz, Z., Uziak, S., 2001. The influence of long-term cultivation on soil properties and patterns in an undulating terrain in Poland. Catena 43, 177–189. https://doi.org/10.1016/S0341-....
 
25.
Koćmit, A., Chudecka, J., Podlasiński, M., Raczkowski, B., Roy, M., Tomaszewicz T., 2001. The spatial variability of soil on eroded slope in morain area of West Pomerania. Folia Universitatis Agriculturae Stetinensis. 217 Agricultura (87), 97–102.
 
26.
Kobierski, M., 2013. Morfologia, właściwości oraz skład mineralny gleb płowych zerodowanych w wybranych obszarach morenowych województwa kujawsko-pomorskiego. Wydawnictwa Uczelniane Uniwersytetu Technologiczno-Przyrodniczego, Bydgoszcz.
 
27.
Kondracki, J., 2009. Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa.
 
28.
Leopold, M., Völkel, J., 2007. Colluvium: definition, differentiation, and possible suitability for reconstructing Holocene climate data. Quaternary International 162 (163), 133–140. https://doi.org/10.1016/j.quai....
 
29.
Marcinek, J., Komisarek, J., 2004. Antropogeniczne przekształcenia gleb Pojezierza Poznańskiego na skutek intensywnego użytkowania rolniczego. Wydaw. Akademii Rolniczej im. Augusta Cieszkowskiego, Poznań.
 
30.
Martinez-Casasnovas, J.A., Ramos, M.C., 2009. Soil alteration due to erosion, ploughing and levelling of vineyards in north east Spain. Soil Use and Management 25, 183–192. https://doi.org/10.1111/j.1475....
 
31.
Mendyk, Ł., Markiewicz, M., Świtoniak, M., 2014. Catchments of disappearing lakes in glacial meltwater landscapes (Brodnica Lake District). [In:] Świtoniak, M., Charzyński, P., [Eds.] Soil sequences atlas. Wydawnictwo Naukowe UMK, Toruń: 93–107.
 
32.
Munsell Soil Colour Charts, 2000. GreagMacbeth, New Windsor.
 
33.
Niewiarowski, W., 1959. Glacial forms and types of deglaciations on the moraine plateau of Chełmno (Bydgoszcz district). Studia Soc. Sci. Torun. Section C. 1. 4. Toruń (In Polish with English summary).
 
34.
Niewiarowski, W., Weckwerth, P., 2006. Geneza i rozwój rzeźby terenu, [w:] Toruń i jego okolice: monografia przyrodnicza. Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń.
 
35.
Novák, T., Árendás, T., Świtoniak, M., 2018. Soils of an undulating, cultivated loess plateau in North Mezőföld, Central Hungary. [In:] Świtoniak M., Charzyński P., [Eds.] Soil sequences atlas IV. Machina Druku, Toruń, 113–122.
 
36.
Paluszek, J., 1994. Wpływ erozji wodnej na strukturę i wodoodporność agregatów gleb płowych wytworzonych z lessu. Roczniki Gleboznawcze – Soil Science Annual 45, 3/4, 21–31.
 
37.
Paluszek, J., 2010. Zmiany pokrywy glebowej pod wpływem erozji. Prace i Studia geograficzne. 45, 279–294.
 
38.
Penížek, V., Zádorová, T., Němeček, K., 2018. Soils of hilly loess region in Ždánice Forest, south-east Czechia. [In:] Świtoniak M., Charzyński P., [Eds.] Soil sequences atlas II. Machina Druku, Toruń: 115–126.
 
39.
Pindral, S., Świtoniak, M. 2017. The usefulness of soil-agricultural maps to identify classes of soil truncation. Soil Science Annual 68 (1), 2–10.
 
40.
Podlasiński, M., 2013. Wpływ denudacji antropogenicznej na zróżnicowanie pokrywy glebowej i jej przestrzenną strukturę w rolniczym krajobrazie morenowym, Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie, Szczecin.
 
41.
Polish Soil Classification, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław – Warszawa.
 
42.
Przewoźna, B. 2012. Przekształcenia gleb w wyniku denudacji antropogenicznej interpretowane na podstawie map gleboworolniczych, ortofotomap i badań terenowych. Czasopismo Prace Komisji Krajobrazu Kulturowego, Komisja Krajobrazu Kulturowego Polskiego Towarzystwa Geograficznego, 148–156.
 
43.
Quénard, L., Samouëlian, A., Laroche, B., Cornu, S., 2011. Lessivage as a major process of soil formation: a revisitation of existing data. Geoderma 167–168, 135–147. https://doi.org/10.1016/j.geod....
 
44.
Ramowska, D., 2016, The influence of soil conditions for diversification of cereal yields in the landscape of undulating morainic plateaus. Master's thesis manuscript - under the supervision of Piotr Hulisz. Department of Soil Science and Landscape Management, NCU in Toruń (in Polish).
 
45.
Rataj, P., 2012, Characteristics of the immediate catchment area of soil around the kattle-hole near Zbójenko. Master's thesis manuscript - under the supervision of Renata Bednarek. Department of Soil Science and Landscape Management, NCU in Toruń (in Polish).
 
46.
Sauer, D., Schülli-Maurer, I., Sperstad, R., Sørensen, R., Stahr, K. 2009. Albeluvisol development with time in loamy marine sediments of southern Norway. Quaternary International 209, 31–43. https://doi.org/10.1016/j.quai....
 
47.
Sinkiewicz, M., 1998. The development of anthropogenic denudation in central part of northern Poland. Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń. 103 ss (in Polish with English abstract).
 
48.
Solon, J., Borzyszkowski, J, Bidłasik, M., Richling, A, Badora, K, Balon, J, Brzezińska-Wójcik, T, Chabudziński, Ł., Dobrowolski, R, Grzegorczyk, I, Jodłowski, M., Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, M., Malinowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Terpiłowski, S., Ziaja, W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2), 143– 170. https://doi.org/GPol.0115.
 
49.
Sommer, M., Schlichting, E. 1997. Archetypes of catenas in respect to matter a concept for structuring and grouping catenas. Geoderma 76, 1–33. https://doi.org/10.1016/S0016-....
 
50.
Szuliński, M., 2017. Diversity of eroded soils of Chełmno and Brodnica Lakeland. Master's thesis manuscript - under the supervision of Marcin Świtoniak. Department of Soil Science and Landscape Management, NCU in Toruń (in Polish).
 
51.
Świtoniak, M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116, 173–184. https://doi.org/10.1016/j.cate....
 
52.
Świtoniak, M., 2015. Issues relating to classification of colluvial soils in young morainic areas (Chełmno and Brodnica Lake District, northern Poland). Soil Science Annual. 66 (2), 57–66. https://doi.org/10.1515/ssa-20....
 
53.
Świtoniak, M., Markiewicz, M., Bednarek, R., Paluszewski, B., 2013. Application of aerial photographs for the assessment of anthropogenic denudation impact on soil cover of the Brodnica Landscape Park plateau areas. Ecological Questions 17, 101–111. http://dx.doi.org/10.12775/eco....
 
54.
Świtoniak, M., Charzyński, P., Mendyk, Ł., 2014. Agricultural areas within hummocky moraine plateaus of Poland (Brodnica Lake District). [In:] Świtoniak M., Charzyński P., [Eds.] Soil sequences atlas. Wydawnictwo Naukowe UMK, Toruń, 77–91.
 
55.
Świtoniak, M., Dąbrowski, M., Łyszkiewicz, A., 2015. The Influence of Human-induced Erosion on the Soil Organic Carbon Stock in Vineyards of Fordon Valley. Polish Journal of Soil Science 48, 2, 197–211.
 
56.
Świtoniak, M., Mroczek, P., Bednarek, R., 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes — Case study: Brodnica and Chełmno Lake Districts (North Poland). Catena. 136, 583–595. https://doi.org/10.1016/j.cate....
 
57.
Świtoniak, M., Hulisz, P., Jaworski, T., Pietrzak, D., Pindral, S., 2018. Soils of slope niches in the Toruń-Eberswalde ice-marginal valley. [In:] Świtoniak M., Charzyński P., [Eds.] Soil sequences atlas II. Machina Druku, Toruń, 157–175.
 
58.
Turski, R., Paluszek, J., Słowińska-Jurkiewicz, A., 1987. Wpływ erozji na fizyczne właściwości gleb wytworzonych z lessu. Roczniki Gleboznawcze – Soil Science Annual, 38(1), 37–49.
 
59.
Turski, R., Paluszek, J., Słowińska-Jurkiewicz, A., 1991. Wpływ rzeźby terenu na stopień zerodowania i właściwości fizyczne gleb lessowych, [w:] Z. Mazur, S. Pałys, W. Grodzieński [red.], Erozja gleb i jej zapobieganie, Wyd. AR, Lublin, 47–62.
 
60.
Uggla, H., Mirowski, Z., Grabarczyk, S., Nożyński, A., Rytelewski, J., Solarski, H., 1968. The water erosion process in hilly areas of north-eastern part of Poland. Soil Science Annual 18 (2), 415–446 (in Polish with English summary).
 
61.
Van Oost, K., Van Muysen, W., Govers, G., Heckrath, G., Quine, T.A., Poesen, J., 2003. Simulation of the redistribution of soil by tillage on complex topographies. European Journal of Soil Science 54, 63–76. https://doi.org/10.1046/j.1365....
 
62.
Wójcik, G., Marciniak, K., 1987a. Thermal conditions in central part of the North Poland in the years 1951–1970. Acta Universitatis Nicolai Copernici Geografia 20, 29–50 (in Polish).
 
63.
Wójcik, G., Marciniak, K., 1987b. Precipitation in the central part of northern Poland in years 1951–1970. Acta Universitatis Nicolai Copernici Geografia 20, 51–69 (in Polish).
 
64.
Wysota, W., 1993. Model kształtowania rzeźby subglacjalnej w środkowo-wschodniej części Pojezierza Chełmińsko-Dobrzyńskiego. Mat. II Seminarium: Geneza, litologia i stratygrafia utworów czwartorzędowych, Poznań.
 
65.
Zieliński, G., 2014. The application of aerial photographs in mapping of semi-hydrogenic, chernozemic soils in the Chełmińskie Lake District. Master's thesis manuscript - under the supervision of Renata Bednarek. Department of Soil Science and Landscape Management, NCU in Toruń (in Polish, abstract in English).
 
66.
Žížala, D., Juřicová, A., Zádorová, T., Zelenková, K., Minařík, R., 2019. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. European Journal of Remote Sensing 52, S1, 108–122. https://doi.org/10.1080/227972....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top