PL EN
PRACA ORYGINALNA
Pozycja systematyczna gleb aluwialnych - zagadnienia problematyczne na przykładach z Pojezierzy Południowobałtyckich, Polska północna
 
Więcej
Ukryj
1
Wydział Nauk o Ziemi i Gospodarki Przestrzennej, Katedra Gleboznawstwa i Kształtowania Krajobrazu, Uniwersytet Mikołaja Kopernika w Toruniu, Polska
 
2
Wydział Nauk o Ziemi i Gospodarki Przestrzennej, Laboratorium Analiz Środowiskowych, Uniwersytet Mikołaja Kopernika w Toruniu, Polska
 
 
Data nadesłania: 20-07-2022
 
 
Data ostatniej rewizji: 05-11-2022
 
 
Data akceptacji: 03-12-2022
 
 
Data publikacji online: 03-12-2022
 
 
Data publikacji: 20-12-2022
 
 
Autor do korespondencji
Marcin Świtoniak   

Wydział Nauk o Ziemi i Gospodarki Przestrzennej, Katedra Gleboznawstwa i Kształtowania Krajobrazu, Uniwersytet Mikołaja Kopernika w Toruniu, Polska
 
 
Soil Sci. Ann., 2022, 73(3)157099
 
SŁOWA KLUCZOWE
STRESZCZENIE
Gleby wytworzone z materiałów aluwialnych stanowią bardzo zróżnicowaną grupę. Dotyczy to zarówno ich genezy, jak i wynikających z niej większości podstawowych właściwości np. zawartości węgla organicznego, cech związanych z oglejeniem opadowo lub gruntowo wodnym, obecności poziomów B czy uziarnienia. Zróżnicowanie omawianych gleb odzwierciedla ich pozycja systematyczna. W najnowszym wydaniu Systematyki gleb Polski (2019) gleby wytworzone z materiałów aluwialnych mogą należeć do trzech typów mad: czarnoziemnych, brunatnych lub właściwych. W przypadku braku poziomów diagnostycznych, ale przy silnym wpływie wody mogą być też klasyfikowane jako gleby gruntowo lub opadowo-glejowe. Celem przeprowadzonych badań była weryfikacja kryteriów jak i kompletności jednostek w randze typów i podtypów gleb aluwialnych wydzielonych w najnowszym wydaniu Systematyki gleb Polski (2019). Badania przeprowadzono w dolinach rzecznych Polski północnej objętej ostatnim zlodowaceniem Wisły. Łącznie przebadano 87 profili glebowych. 18 gleb zostało zaklasyfikowanych jako mady czarnoziemne. Najbardziej powszechne, bo reprezentowane aż przez 48 przypadków, były mady brunatne. Mady właściwe odnotowano 11 razy. Ponadto 7 gleb wytworzonych z materiałów aluwialnych należało do gleb gruntowo-glejowych. 3 pozostałe przypadki zostały zaklasyfikowane jako gleby organiczne i deluwialne. Na podstawie uzyskanych wyników badań opracowano kilka propozycji zmian w Systematyce gleb Polski. Dotyczą one konieczności wprowadzenia kryterium minimalnej miąższości materiału fluvic przy wydzielaniu mad, podniesienia wymogów dla podtypu gleb próchnicznych oraz rozszerzenia gamy typów w glebach glejoziemnych lub podtypów gleb gruntowo-glejowych o mady gruntowo-glejowe oraz typu mad czarnoziemnych o gleby podmokłe. W artykule podjęto też problematyczne kwestie określania genezy poziomów B w glebach aluwialnych. Ponadto badania potwierdziły dużą przydatność map glebowo-rolniczych w określaniu zasięgów występowania gleb aluwialnych.
REFERENCJE (82)
1.
Andrzejewski, L., 1984. Dolina Zgłowiączki - jej geneza oraz rozwój w późnym glacjale i holocenie. Dokumentacja Geograficzna 3, IGiPZ PAN.
 
2.
Babiński, Z., 2005. Renaturisation of the lower Vistula valley using the hydrotechnical method. Przegląd Geograficzny 77(1), 21–36. (in Polish with English abstract).
 
3.
Banaszuk, H., 1987. Dependence of the spatial arrangement of the lithological formation and profile features of alluvial soils on the geomorphologic structure of the flooded valley of lowland rivers as exemplified by a sector of the Narew river valley. Roczniki Gleboznawcze – Soil Science Annual 38 (3), 103–119.
 
4.
Bednarek, R., Prusinkiewicz, Z., 1997. Geografia gleb. PWN, Warszawa.
 
5.
Bullinger-Weber, G., Le Bayon, R.-C. Thébault, A. Schlaepfer, R. Guenat, C., 2014. Carbon storage and soil organic matter stabilisation in near-natural, restored and embanked Swiss floodplains. Geoderma 228–229, 122–131. https://doi.org/10.1016/j.geod....
 
6.
Cappuyns, A., Swennen, R., 2007. Classification of alluvial soils according to their potential environmental risk: a case study for Belgian catchments. Journal of Environmental Monitoring 9, 319-328. https://doi.org/10.1039/B61695....
 
7.
Chojnicki, J., 2001. Iron forms in alluvial soils of central Vistula valley. Roczniki Gleboznawcze – Soil Science Annual 52 (supl.), 97–107. (in Polish with English abstract).
 
8.
Chojnicki, J., 2002. Soil-forming processes in alluvial soils of central Vistula valley and Żuławy. Fundacja Rozwój SGGW, Warsaw. (In Polish with English summary).
 
9.
Cieśla, W., Dąbkowska-Naskręt, H., Dymińska, M., Owedyk, J., 1988. Preliminary results of investigations of the mineralogic composition of clay fraction of selected Vistula alluvial soils. Roczniki Gleboznawcze – Soil Science Annual 39(3), 209–212. (in Polish with English abstract).
 
10.
Cipriano-Silva, R., Valladares, G.S., Azevedo, A.C., Anjos. L.H.C., Pereira. M.G., Pinheiro Junior, C.R., 2020. Alluvial soil formation in the plains of northeastern Brazil. Revista Brasileira de Ciencia do Solo 44, 1–18. https://doi.org/10.36783/18069....
 
11.
Dąbkowska-Naskręt, H., 1994. The content of total and DTPA-extractable microelements in selected alluvial soils of Fordon Valley and Unisław Basin. Zeszyty Problemowe Postępów Nauk Rolniczych 414, 99–104. (in Polish with English abstract).
 
12.
Dąbkowska‐Naskręt, H., 2000. Status of iron in alluvial soils from the Wisła River Valley, Poland. Journal of Plant Nutrition 23(11–12), 1549–1557. https://doi.org/10.1080/019041....
 
13.
Driessen, P.M., Deckers, J., Spaargaren, O. 2001. Lecture notes on the major soils of the world. (World Soil Resources Reports: FAO; Vol. 94). Rome: Food and Agriculture Organization of the United Nations (FAO).
 
14.
Faust, D., Olmo, F.D., Escudero, R.B., 2000. Soils in the Holocene alluvial sediments of the Rio Fraja Valley, Spain: in situ or soil-sediments? Catena 41, 1–3, 133–142. https://doi.org/10.1016/S0341-....
 
15.
Głąb, T., Gondek, K., 2013. The influence of soil compaction on chemical properties of Mollic Fluvisol soil under Lucerne (Medicago sativa L.). Polish Journal of Environmental Studies 22(1), 107–113.
 
16.
Hein, T., Baranyi, C., Herndl, G.J., Wanek, W. Schiemer, F., 2003. Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube: the importance of hydrological connectivity. Freshwater Biology, 48: 220–232. https://doi.org/10.1046/j.1365....
 
17.
Hewelke, P., Hewelke, E., Oleszczuk, R., Kwas, M., 2018. The application of pedotransfer functions in the estimation of water retention in alluvial soils in Żuławy Wiślane, northern Poland. Soil Science Annual 69(1), 3–10. https://doi.org/10.2478/ssa-20....
 
18.
Hikmatullah, A., Al-Jabri, M., 2007. Soil properties of the alluvial plain and its potential use for agriculture in Donggala Region, Central Sulawesi. Indonesian Journal of Agricultural Science 8(2), 67–74. https://doi.org/10.21082/ijas.....
 
19.
Holmes, R.S., Hearn, W.E. 1942. Chemical and Physical Properties of Some of the Important Alluvial Soils of the Mississippi Drainage Basin. Technical Bulletin 833, 1–82.
 
20.
Hulisz, P., Michalski, A., Dąbrowski, M., Kusza, G., Łęczyński, L., 2015. Human-induced changes in the soil cover at the mouth of the Vistula River Cross-Cut (northern Poland). Soil Science Annual 66, 67–74. https://doi.org/10.1515/ssa-20....
 
21.
Iqbal, J., Thomasson, J.A., Jenkins, J.N., Owens, P.R., Whisler, F.D. 2005. Spatial Variability Analysis of Soil Physical Properties of Alluvial Soils. Soil Science Society Of America Journal 69, 1338–1350. https://doi.org/10.2136/sssaj2....
 
22.
Intergovernmental Panel on Climate Change (IPCC), 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Egglestone, H.S., Buendia,, L., Miwa, K., Ngara, T. Tanabe, K. (Eds.). Intergovernmental Panel on Climate Change (IPCC), IPCC/IGES, Hayama, Japan.
 
23.
IUSS Working Group WRB, 2007. World Reference Base for Soil Resource 2006. World Soil Resources Reports No. 103, Food and Agriculture Organization of the United Nations, Rome.
 
24.
IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report No. 106, FAO, Rome, Italy.
 
25.
Jankowski, M., 2014. The evidence of lateral podzolization in sandy soils of Northern Poland. Catena 112. 139-147. https://doi.org/10.1016/j.cate....
 
26.
Jonczak, J., 2015. Geneza, ewolucja i właściwości gleb dolin rzek źródłowych w młodoglacjalnych obszarach zastoiskowych. Wyd. Naukowe Akademii Pomorskiej, Słupsk, 758.
 
27.
Jonczak, J., Parzych, A., Sztabkowski, K., 2022. Soil-forming processes and properties of soils developed from fluvic materials in the headwater river valleys of Middle Pomerania, north Poland: A case study of the Kamienna stream. Soil Science Annual 73(3), 156044. https://doi.org/10.37501/soils....
 
28.
Kabała, C., Gałka, B., Jezierski, P., Bogacz, A., 2011. Transformation of fluvisols caused by river regulation and long-term farming - a case study from the Dobra River valley in the Silesian Lowland. Roczniki Gleboznawcze – Soil Science Annual 62(2), 141–153. (in Polish with English abstract).
 
29.
Kabała, C. et al., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97. https://doi.org/10.2478/ssa-20....
 
30.
Kalembasa, D., Becher, M., Pakuła, K., 2001. Gleby z poziomami żelazistymi w dolinie rzeki Liwiec. Roczniki Gleboznawcze – Soil Science Annual 52, 71–78.
 
31.
Kalinowski, A., Burandt, P., Glińska-Lewczuk, K., 2011. Effect of hydrological factors on temperature and oxygen distribution in floodplain lakes. A case study of the Drwęca floodplain. Proceedings of ECOpole 5, 1, 245–250. (in Polish with English abstract).
 
32.
Kanno, I., Honjo, Y., Arimura, S., Kuwano, Y., 1965. Characteristics and classification of an unirrigated anthropogenic-alluvial soil found in the Kumamoto Plain, Soil Science and Plant Nutrition, 11(1), 14-23. https://doi.org/10.1080/003807....
 
33.
Kawałko, D., Jezierski, P., Kabała, C., 2021. Morphology and Physicochemical Properties of.
 
34.
Alluvial Soils in Riparian Forests after River Regulation. Forests 12, 329. https://doi.org/10.3390/f12030....
 
35.
Kejna, M., Hildebrandt, K., Kartanas, E., Pius, B., Rutkowski, L., Sobota, I., Solarczyk, A., Sulik, S., Uscka-Kowalkowska, J., Wojtczak. H., 2020. Raport z realizacji programu badawczo-pomiarowego Zintegrowanego Monitoringu Środowiska Przyrodniczego w Stacji Bazowej Pojezierze Chełmińskie (Koniczynka) w 2019 roku. Toruń.
 
36.
Kobierski, M., Banach-Szott, M., 2022. Organic Matter in Riverbank Sediments and Fluvisols from the Flood Zones of Lower Vistula River. Agronomy 12, 536. https://doi.org/10.3390/agrono....
 
37.
Kondracki, J., 2009. Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa.
 
38.
Kordowski, J., Gamrat, W., Gierszewski, P., Kubiak- Wójcicka, K., Szmańda, J. B., Tyszkowski, S., Solarczyk, A., 2014. Record of fluvial and biogenic sedimentation processes in sediments of the Lower Vistula Valley floor. Landform Analysis 25, 77–93. (in Polish with English abstract). https://doi.org/10.12657/landf....
 
39.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of Köppen-Geiger Climate Classification updated. Meteorologische Zeitschrift, 15, 259–263. https://doi.org/10.1127/0941-2....
 
40.
Laskowski, S., 1986. Origin, evolution and the properties of alluvial soils from the middle Odra river valley. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu 56. (in Polish with English abstract).
 
41.
Łabaz, B., Kabała, C., 2016. Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena 139, 117–126. https://doi.org/10.1016/j.cate....
 
42.
Łachacz, A., Nitkiewicz, S., 2021. Classification of soils developed from bottom lake deposits in north-eastern Poland. Soil Science Annual 72 (2), 1–14. https://doi.org/10.37501/soils....
 
43.
Makowski, J., 1998. Dolna Wisła i jej obwałowania: historyczne kształtowanie, obecny stan i zachowanie w czasie znacznych wezbrań. Część II. Odcinek od Torunia do Białej Góry. Wydawnictwo IBW PAN, Gdańsk. s. 81-84.
 
44.
Marks, L., 2012. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44, 81–88. https://doi.org/10.1016/j.quas....
 
45.
Mayer, S., Kölbl, A., Völkel, J., Kögel-Knabner, I., 2019. Organic matter in temperate cultivated floodplain soils: Light fractions highly contribute to subsoil organic carbon. Geoderma 337, 679–690. https://doi.org/10.1016/j.geod....
 
46.
Mendyk, Ł., Świtoniak, M., Bednarek, R., Falkowski, A., 2015. Genesis and classification of the soils developed from the sediments of the former Oleszek mill pond basin (the Chełmińskie Lakeland, N Poland). Soil Science Annual 66 (1), 29–35. https://doi.org/10.1515/ssa-20....
 
47.
Mendyk, Ł., Hulisz, P., Kusza, G., Świtoniak, M., Gersztyn, L., Kalisz, B., 2016. Sediment origin and pedogenesis in the former mill pond basin of Turznice (north-central Poland) based on magnetic susceptibility measurements. Bulletin of Geography. Physical Geography Series 11, 55–69. http://dx.doi.org/10.1515/bgeo....
 
48.
Michalski, A., 2013. The problem of protection of organic carbon stocks in plough soils of the Lower Vistula floodplain. Episteme 18, 329–337.
 
49.
Młynarek, Z., Stefaniak, K., Wierzbicki, J., 2012. Geotechnical Parameters of Alluvial Soils from in-situ Tests. Archives of Hydro-Engineering and Environmental Mechanics 59(1-2), 63-81. https://doi.org/10.2478/v10203....
 
50.
Munsell Soil Color Charts, 2000. GreagMacbeth, New Windsor.
 
51.
Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Terpiłowski, S., Ziaja, W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2), 143–170. https://doi.org/GPol.0115.
 
52.
Niedźwiecki, E., Meller, E., Malinowski, R., Sammel, A., Sobczyńska, E., 2010a. The diversity of habitat conditions and plant communities in the Ina River valley near Sowno. Part II. Soil chemical properties and macro-element content in grassland sward. Water-Environment-Rural-Areas 10, 1(29), 145–155. (in Polish with English abstract).
 
53.
Niedźwiecki, E., Winkler, L., Wojcieszczuk, M., Jarnuszewski, G., 2010b. Selected properties of variably used alluvial soils located in the Ina river valley near the Krąpiel river mouth to the north of Stargard Szczeciński. Part I. Hydrological conditions and morphological features of soils. Roczniki Gleboznawcze – Soil Science Annual 61 (4), 171–177. (in Polish with English abstract).
 
54.
Niewiarowski, W., 1959. Glacial forms and types of deglaciations on the moraine plateau of Chełmno (Bydgoszcz district). Studia Societatis Scientiarum Torunensis Sectio C. 1. 4. Toruń. (in Polish with English summary).
 
55.
Niewiarowski, W., 1986. Morphogenesis of the Brodnica outwash on the background of ther glacial landforms of Brodnica Lake District. Acta Universitatis Nicolai Copernici sec. Geografia 19 (60), 3–30. (in Polish with English summary).
 
56.
Niewiarowski, W., Wysota, W., 1986. Moraine plateau levels of the Brodnica Moraine Plateau and their genesis. Acta Universitatis Nicolai Copernici sec. Geografia 19 (60), 39–46. (in Polish with English summary).
 
57.
Paluszek, J., 2004. Comparison of aggregation and aggregate water stability in Luvisols, Phaeozems and Fluvisols. Roczniki Gleboznawcze – Soil Science Annual 55(1), 181–191. (in Polish with English abstract).
 
58.
Polish Soil Classification (Systematyka gleb Polski), wyd. 2, 1959. Roczniki Gleboznawcze – Soil Science Annual 7(2).
 
59.
Polish Soil Classification (Systematyka gleb Polski), wyd. 3, 1974. Roczniki Gleboznawcze – Soil Science Annual 25(1).
 
60.
Polish Soil Classification (Systematyka gleb Polski), wyd. 4, 1989. Roczniki Gleboznawcze – Soil Science Annual 40.
 
61.
Polish Soil Classification (Systematyka gleb Polski), wyd. 5, 2011. Roczniki Gleboznawcze – Soil Science Annual 62(3).
 
62.
Polish Soil Classification (Systematyka gleb Polski), wyd. 6, 2019. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wrocław – Warszawa.
 
63.
Pranagal, J., Ligeza, S., 2011. Retention of Fluvisols on a present-day floodplain of the Vistula river near Puławy. Roczniki Gleboznawcze – Soil Science Annual 62(2), 335–340. (in Polish with English summary).
 
64.
Radziuk, H., Świtoniak, M., 2021. Soil erodibility factor (K) in soils under varying stages of truncation. Soil Science Annual, 72(1):134621. https://doi.org/10.37501/soils....
 
65.
Rennert, T., Antić-Mladenović, S., Barančiková, G., Borůvka, L., Bosak, V., Cacovean, H., Čechmánková, J., Graf-Rosenfellner, M., Kobza, J., Mayer, S., Michalski, A., Pavlů, L., Rinklebe, J., Savin, I., Rubinić, V., 2021. Does soil organic matter in mollic horizons of central/east European floodplain soils have common chemical features? Catena 200, 105192. https://doi.org/10.1016/j.cate....
 
66.
Rytelewski, J., 1965. Typology of the alluvial soils of Łyna valley. Roczniki Gleboznawcze – Soil Science Annual 15, 1, 91–109. (in Polish with English summary).
 
67.
Schaetzl, R., Anderson, S., 2005. Soils. Genesis and Geomorphology. Cambridge University Press.
 
68.
Sewerniak, P., Jankowski, M., Dąbrowski, M., 2017. Effect of topography and deforestation on regular variation of soils on inland dunes in the Toruń Basin (N Poland). Catena 149(1), 318-330. https://doi.org/10.1016/j.cate....
 
69.
Sheremet, B.V., 2006. Soil horizons as the basis for classification of alluvial soils. Eurasian Soil Science 39, 127–133. https://doi.org/10.1134/S10642....
 
70.
Soil Survey Staff, USDA. Soil Taxonomy. 1999. Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Washington DC, 745.
 
71.
Solon, J., Borzyszkowski, J, Bidłasik, M., Richling, A, Badora, K, Balon, J, Brzezińska-Wójcik, T, Chabudziński, Ł., Dobrowolski, R, Grzegorczyk, I, Jodłowski, M., Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, M., Malinowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Terpiłowski, S., Ziaja, W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2), 143–170. https://doi.org/10.7163/GPol.0....
 
72.
Suther, B.E., Leigh, D. S. 2020. Soil morphology of an alluvial chronosequence from the Little River, North Carolina Coastal Plain, USA. Geomorphology 351, 106921. https://doi.org/10.1016/j.geom....
 
73.
Strzemski, M., 1955. The typology of Polish alluvial soils. Roczniki Gleboznawcze – Soil Science Annual 4, 180–191. (in Polish).
 
74.
Sulimierski, F., Chlebowski, B., Walewski, W., 1880. Słownik geograficzny Królestwa Polskiego i innych krajów słowiańskich. Tom II, s. 724. Druk Wieku. Warszawa.
 
75.
Sykuła, M., Jankowski, M., Mendyk, Ł., Dąbrowski, M., Jasińska, J., Michalak, J., Michalski, A., Pindral, S., Bednarek, R. 2019. Wczoraj i dziś Mapy gleb Polski 1300 000 - próba adaptacji do Systematyki gleb Polski 2019 (SGP6). [w:] 30. Kongres Polskiego Towarzystwa Gleboznawczego - Gleba źródłem życia, Bartmiński P., Dębicki R. (red.). Uniwersytet Marii Curie-Skłodowskiej w Lublinie, Lublin, 108-109.
 
76.
Świtoniak, M., 2015. Issues relating to classification of colluvial soils in young morainic areas (Chełmno and Brodnica Lake District, northern Poland). Soil Science Annual. 66(2), 57-66. https://doi.org/10.1515/ssa-20....
 
77.
Świtoniak, M., 2021. Rustification as a collateral process in clay-illuvial soils of northern Poland. Soil Science Annual 72(4). 143444. https://doi.org/10.37501/soils....
 
78.
Świtoniak, M., Kabała, C., Podlasiński, M., Smreczak, B. 2019. Proposal of the correlation between cartographic units on the agricultural soil map and types and subtypes of Polish Soil Classification (6th edition, 2019). Soil Science Annual 70(2), 98–114. https://doi.org/10.2478/ssa-20....
 
79.
Terelak, H., 1967. Kwaśne mady eluwialno-iluwialne. Pamiętnik Puławski 30.
 
80.
Weckwerth, P., Przegiętka, K., Chruścińska, A., Woronko, B., Oczkowski, H.L., 2011. Age and sedimentological features of fluvial series in the Toruń Basin and the Drwęca Valley (Poland). Geochronometria 38(4), 397–412. https://doi.org/10.2478/s13386....
 
81.
Yilmaz, I., Karacan, E., 1997. Geotechnical properties of alluvial soils: An example from South of Sivas (Turkey). Bulletin of the International Association of Engineering Geology 55, 159–165. https://doi.org/10.1007/BF0263....
 
82.
Zehetner, F., Lair, G.J., Maringer, F.J., Gerzabek M.H., Hein, T., 2008. From sediment to soil: floodplain phosphorus transformations at the Danube River. Biogeochemistry 88, 117–126. https://doi.org/10.1007/s10533....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top