PL EN
ORIGINAL PAPER
Chemical weathering of the middle Vistula and Żuławy (Vistula delta) alluvial soils
 
More details
Hide details
1
Katedra Gleboznawstwa, SGGW w Warszawie, Polska
 
 
Submission date: 2022-10-08
 
 
Final revision date: 2022-11-26
 
 
Acceptance date: 2022-12-11
 
 
Online publication date: 2022-12-12
 
 
Publication date: 2022-12-20
 
 
Corresponding author
Józef Chojnicki   

Katedra Gleboznawstwa, SGGW w Warszawie, Polska
 
 
Soil Sci. Ann., 2022, 73(3)157349
 
KEYWORDS
ABSTRACT
The aim of the study was to investigate the intensity of chemical weathering in arable alluvial, currently unflooded soils of the middle Vistula valley from Puławy to Płock (5 profiles) and in the area of Żuławy (3 profiles). According to the IUSS systematics (IUSS Working Group WRB, 2022), the soils were classified as Eutric Fluvisols, Eutric Gleyic Fluvic Cambisol, Gleyic Fluvic Phaeozems and Gleyic Fluvisols. The soils of the middle Vistula showed respectively mainly light loam texture and clayey silt from Żuławy area. The total content of aluminum, calcium, magnesium, potassium and sodium was determined by X-ray fluorescence (XRF) in soil samples (particles <2 mm in diameter), while basic soil analyses were performed with methods commonly used in soil science. The averages and ranges of the chemical weathering indices values in the Vistula valley and Żuław alluvial soil profiles were Chemical Index of Alteration (CIA) – 64.7 (56.1-80), Harnois’s Chemical Index of Weathering (CIW) – 75.7 (67.3-90.5), Plagioclase Index of Alteration (PIA) – 57.9 (44-77.4), Weathering Index of Parker (WIP) – 25.8 (8.8-36.7) and Vogt’s Residual Index (V) – 2.3 (1.8-3.1). The indices reached slightly higher values in the soils of Żuławy than in the middle of the Vistula. The tested soils showed slight weathering determined by the values from 60 to 70 of the most commonly used CIA index. However, the average value of this index in the soils of the middle Vistula slightly exceeded the lower value of this range, while in the soils of Żuławy it was close to the upper value. The gley soil-forming process caused by groundwater, taking place in most soils, increased the intensity of chemical weathering in the horizon of iron compounds accumulation. Meanwhile, the humus accumulation, poorly advanced cambisol development and leaching soil-forming processes did not increase the values of chemical weathering indices. The weathering indices showed a slight weathering variation of the examined soils in the cross-section of their profiles and along the Vistula valley, despite the diversity of climatic conditions during the Holocene period and the geological structure of the middle Vistula and Żuławy catchments.
REFERENCES (44)
1.
Baraniecka, A.M.D., Konecka-Betley, K., 1987. Fluvial sediments of the Vistulian and Holocene in the Warsaw Basin. Geographical Studies. (In:) Evolution of the Vistula River Valley during the last 15 000 years. Special Issue 4, 151-170.
 
2.
Batista, P., Silva, B.P.Ch., Bueno, I., Davies, J., Silva, M.L.N., Júnior, F.W.A., Quinton, J.N., 2017. Modelling spatially distributed soil losses and sediment yield in the upper Grande River Basin, Brazil. Catena 157,139–150.
 
3.
Borówko-Dłużakowa, Z., 1982. Rezultaty badań paleobotanicznych spągu profilu Nart w Puszczy Kampinoskiej. Roczniki Gleboznawcze – Soil Science Annual 33(3/4), 113–118. (in Polish with English abstract).
 
4.
Chojnicki, J., 2001. Forms of iron in the alluvial soils in the middle Wisła valley. Roczniki Gleboznawcze – Soil Science Annual, Suplement 52(¾), 95-107. (in Polish with English abstract).
 
5.
Chojnicki, J., 2002. Soil-forming processes in alluvial soils of central Vistula valley and Żuławy. SGGW Development Foundation, Warsaw, Poland. (in Polish with English abstract).
 
6.
Chojnicki, J., 2004. Formy żelaza w madach Żuław. Roczniki Gleboznawcze – Soil Science Annual 55(1), 77-87. (in Polish with English abstract).
 
7.
Czarnowska, K., Broda, D., Chojnicki, J., Turemka, E., 1995. Metale ciężkie w glebach aluwialnych doliny Wisły. Roczniki Gleboznawcze – Soil Science Annual 46(3/4), 5-18. (in Polish with English abstract).
 
8.
Dąbkowska-Naskręt, H., 1990. Skład i właściwości fizykochemiczne wybranych gleb aluwialnych Doliny Dolnej Wisły z uwzględnieniem ich cech diagnostycznych. Wydawnictwo Uczelniane Akademii Techniczno-Rolniczej, Bydgoszcz. (in Polish).
 
9.
Dengiz, O., 2010. Morphology, physico-chemical properties and classification of soils on terraces of the Tigris river in the South-East Anatolia Region of Turkey. Journal of Agricultural Sciences 16 (3), 205-212.
 
10.
Dengiz, O., Sağlam, M., Özaytekin, H.H., Baskan, O., 2013. Weathering rates and some physico-chemical characteristics of soils developed on a calcic toposequences. Carpathian Journal of Earth and Environmental Sciences 8(2), 13–24.
 
11.
Fedo, C.M., Nesbitt, H.W. & Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols with implications for paleoweathering conditions and provenance. Geology 23, 921–924.
 
12.
Harnois, L., 1988. The CIW index: a new Chemical Index of Weathering. Sedimentary Geology 55, 319– 322.
 
13.
Haskins, D., 2006. Chemical and mineralogical weathering indices as applied to a granite saprolite in South Africa. IAEG2006, Paper number 465, Geological Society of London.
 
14.
Hulisz, P., Michalski, A., Dąbrowski, M., Kusza, G., Łęczyński, L., 2015. Human-induced changes in the soil cover at the mouth of the Vistula River Cross-Cut (northern Poland). Soil Science Annual 66, 67–74.
 
15.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, 505 Austria.
 
16.
Jonczak, J., 2015. Geneza, ewolucja i właściwości gleb dolin rzek źródłowych w młodoglacjalnych obszarach zastoiskowych. Wyd. Naukowe Akademii Pomorskiej, Słupsk, 758. (in Polish).
 
17.
Kacprzak, A., Drewnik, M., Musielok, Ł., 2012. Properties and classification of soils developed on Holocene river deposits in upper San river valley near Tarnawa Wyżna. Roczniki Bieszczadzkie 20, 281–295. (in Polish with English abstract).
 
18.
Kidane, M., Bezie, A., Kesete, N., Tolessa, T., 2019. The impact of land use and land cover (LULC) dynamics on soil erosion and sediment yield in Ethiopia. Heliyon 5, e02981.
 
19.
Kobierski, M., Banach-Szott, M., 2022. Organic Matter in Riverbank Sediments and Fluvisols from the Flood Zones of Lower Vistula River. Agronomy 12(2), 536.
 
20.
Konecka-Betley, K., 1991. Late Vistulian and Holocene fossil soils developed on aeolian and alluvial sediments of the Warsaw Basin. Zeitschrift fur Geomorphologie N.F. Bd. 90, 99-105.
 
21.
Laskowski, S., 1986. Powstawanie i rozwój oraz właściwości gleb aluwialnych Doliny Środkowej Odry. Zesz. Nauk. AR we Wrocławiu, Rozprawy 56. (in Polish).
 
22.
Li, C., Yang, S.Y., 2010. Is chemical index of alteration a reliable proxy for chemical weathering in global drainage basins? American Journal of Science 310, 111-127.
 
23.
Liu, Z., Colin, C., Huang, W., Le, K. P., Tong, S., Chen, Z., Trentesaux, A., 2007. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochemistry Geophysics Geosystems 8, 5. https://doi.org/10.1029/2006GC....
 
24.
Łabaz, B., Kabala, C., 2016. Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena 139, 117–126.
 
25.
Łachacz, A., Nitkiewicz, S., 2021. Classification of soils developed from bottom lake deposits in north-eastern Poland. Soil Science Annual 72(2), 1–14.
 
26.
Ligęza, S., 2016. Variability of the contemporary Fluvisols of the Vistula River near Puławy. Scientific Dissertations of the Lublin University of Life Sciences, Lublin. (in Polish).
 
27.
Mehra, O., Jackson, J., 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay and Clays Minerals 5, 317-327. https://doi.org/10.1016/B978-0....
 
28.
Muhs, D. R., Bettis, E. A., Been, III, J and McGeehin, J. P., 2001. Impact of Climate and Parent Material on Chemical Weathering in Loess-derived Soils of the Mississippi River Valley. Soil Sci. Soc. Am. J. 65, 1761–1777.
 
29.
Nadłonek, W., Bojakowska I., 2018. Variability of chemical weathering indices in modern sediments of the Vistula and Odra Rivers (Poland). Applied Ecology and Environmental Research 16(3):2453-2473. DOI: http://dx.doi.org/10.15666/aee....
 
30.
Nesbitt, H.W. & Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299 (5885), 715–717.
 
31.
Olszewski, Z., Borkowski, T., Rusiecka, D., Skłodowski P., 1966. Mady okolic Wilanowa. Rocz. Nauk Roln. 91-A-1, 57-95. (in Polish).
 
32.
Orzechowski, M., Smólczynski, S., Sowiński, P., 2005. Właściwości sorpcyjne gleb aluwialnych Żuław Wiślanych. Roczniki Gleboznawcze – Soil Science Annual 56(1/2), 119–127. (in Polish with English abstract).
 
33.
Özaytekin, H.H., Mutlu, H.H. & Dedeoglu, M., 2012. Soil Formation on a Calcic Chronosequence of Ancient Lake Konya in Central Anatolia, Turkey. Journal of African Earth Science 76, 66-74.
 
34.
Parker, A., 1970. An index of weathering for silicate rocks. Geol. Mag. 107, 501–504.
 
35.
Systematyka gleb Polski, 2019. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław –Warszawa. (in Polish).
 
36.
Piskozub, A., 1982. Wisła. Monografia rzeki. Wydawnictwo Komunikacji i Łączności. (in Polish).
 
37.
PTG, 2009. Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008. Roczniki Gleboznawcze – Soil Science Annual 60(2), 5-16. (in Polish with English abstract).
 
38.
Shao, J., Yang, S., Li, C., 2012. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments. Sedimentary Geology 265-266, 110-120.
 
39.
Sorokina, O.A., Gysev, M.N., 2018. Weathering reflected by the chemical composition of alluvial soils from the Zeya and Selemdzha river valleys. Science China Earth Sciences 61, 604–613, https://doi.org/10.1007/s11430....
 
40.
Safa, M..S., Khalid, F.H., 2021. A Comparison study between epic and modified epic models in assessing the erodibility for alluvial soils. Mesopotamia Journal of Agriculture 49(3), 27-32. DOI:10.33899/magrj.2021.131054.1138.
 
41.
Tunçay, T., Dengiz, O., Bayramin, I., Kilic, S., Baskan, O., 2019. Chemical weathering indices applied to soils developed on old lake sediments in a semi-arid region of Turkey. Eurasian J. Soil Sci. 8(1), 60 – 72.
 
42.
Vaezi, A., Abbasi, M., Keesstra, S., Cerdà, A., 2017. Assessment of soil particle erodibility and sediment trapping using check dams in small semi-arid catchments. Catena 157, 227–240.
 
43.
Wasilikowa, K., 1964. Roślinność i klimat późnego glacjału w środkowej Polsce na podstawie badań w Witowie koło Łęczycy. Biul. Peryglacjalny 13, 260-417. (in Polish).
 
44.
Witek, T., 1965. Gleby Żuław Wiślanych. Pamiętniki Puławskie 18, 157-266. (in Polish).
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top