PL EN
ORIGINAL PAPER
Characteristics of technogenic soils developed from Neogene and Quaternary sediments substrate on reclaimed sulphur and sand extraction mine sites
 
More details
Hide details
1
Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Kraków, al. 29 Listopada 46, 31-425, Kraków, Poland
 
 
Submission date: 2020-06-03
 
 
Final revision date: 2020-07-21
 
 
Acceptance date: 2020-08-28
 
 
Online publication date: 2021-02-10
 
 
Publication date: 2021-02-10
 
 
Corresponding author
Bartłomiej Woś   

Wydział Leśny, Katedra Ekologii i Hodowli Lasu, Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, Polska
 
 
Soil Sci. Ann., 2020, 71(4), 344-351
 
KEYWORDS
ABSTRACT
This paper presents the diversity of Technosol properties at two post-mining sites: a reclaimed and afforested spoil heap of an opencast sulphur mine and a sandpit excavation, represented by Quaternary sands and loams, Neogene (Krakowiec) clays and mixtures of sands with clays. The investigated post-mining soils significantly differed not only in texture, but also in pH, sorption properties, and C and N content. The observed acidification and increase of C and N in the uppermost soil layers as compared to the parent material demonstrated how the organic matter that accumulates under the trees influences the soil-forming process. The acidification effect was not so clearly visible on clay soils due to their high buffer capacity. However, soils developed from Neogene clays were characterized by the highest organic carbon stock, which is associated not only with in situ accumulation, but also with geogenic carbon bitumens occurring originally in clays. Less carbon stock was observed in soils formed from mixtures of Quaternary sands and Neogene clays and from Quaternary loams and sands than in Neogene clays. The Technosols indicated progressive pedogenesis initiated by reclamation, which is mainly demonstrated by acidification and increase of C and N in the uppermost soil layers horizons compared to the parent rock.
 
REFERENCES (30)
1.
Amichev, B.Y., Burger, J.A., Rodrigue, J.A., 2008. Carbon sequestration by forests and soils on mined land in the Midwestern and Appalachian coalfields of the U.S. Forest Ecology and Management 256, 1949–1959. https://doi.org/10.1016/j.fore....
 
2.
Baule, H., Fricker, C., 1973. Nawożenie drzew leśnych. PWRiL, Warszawa.
 
3.
Bednarek, R., Dziadowiec, H., Pokojska, U., Prusinkiewicz, Z., 2011. Badania ekologiczno-gleboznawcze. Wydawnictwo Naukowe PWN, Warszawa.
 
4.
Bell, F.G., Donnelly, L.J., 2006. Mining and its impact on the environment. Taylor and Francis Group, London and New York.
 
5.
Brevik, E.C., Lazari, A.G., 2014. Rates of Pedogenesis in Reclaimed Lands as Compared to Rates of Natural Pedogenesis. Soil Horizons 55(1), 1-6. https://doi.org/10.2136/sh13-0....
 
6.
Chabbi, A., Sebilo, M., Rumpel, C., Schaaf, W., Mariotti, A., 2008. Origin of nitrogen in reforested lignite-rich mine soils revealed by stable isotope analysis. Environmental Science & Technology 42, 2787–2792. https://doi.org/10.1021/es7023....
 
7.
de Vos, B., Cools, N., Ilvesniemi, H., Vesterdal, L., Vanguelova, E., Carnicelli, S., 2015. Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma 251-252, 33–46. https://doi.org/10.1016/j.geod....
 
8.
Fettweis, U., Bens, O., Hüttl, R.F., 2005. Accumulation and properties of soil organic carbon at reclaimed sites in the Lusatian lignite mining district afforested with Pinus sp. Geoderma 129(1–2), 81–91. https://doi.org/10.1016/j.geod....
 
9.
Frouz, J. 2016. Effects of Soil Development Time and Litter Quality on Soil Carbon Sequestration: Assessing Soil Carbon Saturation with a Field Transplant Experiment along a Post‐mining Chronosequence. Land Degradation & Development 28(2), 664-672. https://doi.org/10.1002/ldr.25....
 
10.
Gruba, P., Socha, J., 2019. Exploring the effects of dominant forest tree species, soil texture, altitude, and pHH2O on soil carbon stocks using generalized additive models. Forest Ecology and Management 447, 105-114. https://doi.org/10.1016/j.fore....
 
11.
Gruszczyński, S., Sroka, K., Trafas, M., 2012. Akumulacja węgla organicznego w iłach krakowieckich zrekultywowanego zwałowiska kopalni siarki „Machów”. Przegląd Górniczy 68(8), 27-36.
 
12.
Hüttl, R.F., Weber, E., 2001. Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften 88, 322–329. https://doi.org/10.1007/s00114....
 
13.
IUSS Working Group WRB, 2015. World Reference Base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Report No. 106. FAO, Rome: 212 pp.
 
14.
Józefowska, A., Sokołowska, J., Woźnica, K., Woś, B., Pietrzykowski, M., 2019. Tree species and soil substrate affect buffer capacity of anthroposols in afforested postmine sites in Poland. Journal of Soil and Water Conservation 74(4), 372–379. https://doi.org/10.2489/jswc.7....
 
15.
Kabała C., Charzyński P., Chodorowski J., Drewnik M., Glina B., Greinert A., Hulisz P., Jankowski M., Jonczak J., Łabaz B., Łachacz A., Marzec M., Mendyk Ł., Musiał P., Musielok Ł., Smreczak B., Sowiński P., Świtoniak M., Uzarowicz Ł., Waroszewski J. 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71-97. https://doi.org/10.2478/ssa-20....
 
16.
Pawłowski S., Pawłowska K., Kubica B. 1985. Budowa geologiczna tarnobrzeskiego złoża siarki rodzimej. Red. K. Pawłowska. Prace Instytutu Geologicznego CXIV, Wydawnictwa Geologiczne, Warszawa.
 
17.
Pietrzykowski, M., Krzaklewski, W., Pająk, M., Socha, J., Ochał, W., 2010. Analiza i optymalizacja metod klasyfikacji siedlisk i kryteriów oceny rekultywacji leśnej na wybranych terenach pogórniczych w Polsce. Wydawnictwo UR Kraków, Kraków.
 
18.
Pietrzykowski, M., 2014. Soil quality index as a tool for Scots pine (Pinus sylvestris) monoculture conversion planning on afforested, reclaimed mine land. Journal of Forestry Research 25, 63–74. https://doi.org/10.1007/s11676....
 
19.
Pietrzykowski, M., Krzaklewski, W., 2007. Soil organic matter, C and N accumulation during natural succession and reclamation in an opencast sand quarry (southern Poland). Archives of Agronomy and Soil Science 53(5): 473–483. https://doi.org/10.1080/036503....
 
20.
Pietrzykowski, M., Daniels, W.L., 2014. Estimation of carbon sequestration by pine (Pinus sylvestris L.) ecosystems developed on reforested post-mining sites in Poland on differing mine soil substrates. Ecological Engineering 73, 209–218. https://doi.org/10.1016/j.ecol....
 
21.
Pietrzykowski, M., Krzaklewski, W., 2009. Rekultywacja leśna terenów wyrobisk po eksploatacji piasków podsadzkowych na przykładzie kopalni “Szczakowa”. Monografia. Uniwersytet Rolniczy w Krakowie, Wydział Leśny, Katedra Ekologii Lasu, Kraków.
 
22.
Rowland, S.M., Prescott, C.E., Grayston, S.J., Quideau, S.A., Bradfield, G.E., 2009. Recreating a Functioning Forest Soil in Reclaimed Oil Sands in Northern Alberta: An Approach for Measuring Success in Ecological Restoration. Journal of Environmental Quality 38(4), 1580-1590. https://doi.org/10.2134/jeq200....
 
23.
Rumpel, C., Kögel-Knabner, I., 2003. Characterization of organic matter and carbon cycling in Rehabilitated lignite-rich mine soils. Water, Air and Soil Pollution 3(1), 153-166. https://doi.org/10.1023/A:1022....
 
24.
Skawina T. 1974. Charakterystyka działalności rekultywacyjnej na zwałowisku zewnętrznym Kopalni Siarki „Piaseczno”. Instytut Kształtowania i Ochrony Środowiska AGH Kraków, maszynopis.
 
25.
Solon, J., Borzyszkowski, J., Bidłasik, M., Richling, A., Badora, K., Balon, J., Brzezińska-Wójcik, T., Chabudziński, Ł., Dobrowolski, R., Grzegorczyk, I., Jodłowski, M., Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, A., Malinowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Terpiłowski, S., Ziaja, W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2), 143-170. https://doi.org/10.7163/GPol.0....
 
26.
Strzyszcz, Z., Harabin, Z. 2004. Rekultywacja i biologiczne zagospodarowanie odpadów górnictwa węgla kamiennego ze szczególnym uwzględnieniem centralnych zwałowisk. Instytut Podstaw Inżynierii Środowiska PAN, Zabrze.
 
27.
Vindušková, O., Frouz, J., 2013. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: a quantitative review. Environmental Earth Sciences 69, 1685–1698. https://doi.org/10.1007/s12665....
 
28.
Węgorek, T., 2003. Zmiany niektórych właściwości materiału ziemnego i rozwój fitocenoz na zwałowisku zewnętrznym kopalni siarki w wyniku leśnej rekultywacji docelowej. Rozprawy Naukowe Akademii Rolniczej w Lublinie. Wydział Rolniczy. Zeszyt 275, 1−140.
 
29.
Woś, B., Pietrzykowski, M., Józefowska, A., 2018. Reclaimed mine soil substrates and tree stands vs. successional forest floor vegetation: A case study of developing ecosystems on afforested mine sites. Ecological Engineering 120, 504−512. https://doi.org/10.1016/j.ecol....
 
30.
Ziemnicki, S., 1980. Rekultywacja zwału kopalni odkrywkowej (na przykładzie Piaseczna). Problemy Rejonów Uprzemysławianych, Warszawa.
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top