PL EN
ORIGINAL PAPER
Assessment of the soil microbial community under energy crops (Panicum virgatum L. and Miscanthus giganteus): a case study from Ukraine
 
More details
Hide details
1
Educational and Scientific Institute of Agricultural Technologies, Breeding and Ecology, Poltava State Agrarian University, Skovorody St., 1/3, Poltava, 36003, Ukraine, Ukraine
 
 
Submission date: 2024-04-23
 
 
Final revision date: 2024-10-09
 
 
Acceptance date: 2025-01-03
 
 
Online publication date: 2025-01-03
 
 
Publication date: 2025-01-03
 
 
Corresponding author
Anna Taranenko   

Educational and Scientific Institute of Agricultural Technologies, Breeding and Ecology, Poltava State Agrarian University, Skovorody St., 1/3, Poltava, 36003, Ukraine, Skovorody 1/3, 36003, Poltava, Ukraine
 
 
Soil Sci. Ann., 2025, 76(1)199764
 
KEYWORDS
ABSTRACT
Bioenergy crops are a promising alternative for energy production. They can be grown on inaccessible, degraded, marginal land that is not economically viable for traditional agriculture. At the same time, a broader evaluation of the environmental and ecological impact of energy crop cultivation on land is needed. There are still knowledge gaps regarding the mechanisms underlying soil carbon accumulation, especially concerning the involvement of the soil microbiome in facilitating these processes during energy crop cultivation. The present study determined the main ecotrophic and taxonomic groups of soil microbial communities and the direction of soil microbiological processes under Panicum virgatum L. and Miscanthus giganteus growth. Research results showed an initial impact of energy crop growth on soil microbial communities in the soil-climatic conditions of Ukrainian forest-steppe zones. Soils under energy crops are characterized by the highest abundances of the investigated ecological and trophic microbial groups (by 1.2-3 times) compared to control (soil under grassland). The coefficients of microbiological processes determine the high potential for increasing soil fertility under energy crop cultivation. Statistical analysis of the results confirmed a medium and strong correlation between soil microbiological parameters and soil organic carbon content during energy crop growth. Therefore, energy crops can act as ecosystem engineers, improving soil biological and chemical properties and supporting soil ecosystem sustainability.
REFERENCES (29)
1.
Andreiuk, K.I., Iutynska, H.O., Antypchuk, A.F., Valahurova, V.O., Kozerytska, V.I., Ponomarenko, S.P., 2001. Funktsionuvannia mikrobnykh tsenoziv gruntu v umovakh antropohennoho navantazhennia. Kyiv: Oberehy.
 
2.
Bourgeois, E., Dequiedt, S., Lelie`vre, M., Oort, F., Lamy, I., Maron, P.-AL., Ranjard, L., 2015. Positive effect of the Miscanthus bioenergy crop on microbial diversity in wastewater-contaminated soil. Environ Chemistry Letters 13, 495–501. https://doi.org/10.1007/s10311....
 
3.
Brami, L., Lowe, CH. N., Menasseri, S., Jacquet, TH., Pérès, G., 2020. Multi-parameter assessment of soil quality under Miscanthus x giganteus crop at marginal sites in Île-de-France. Biomass and Bioenergy 142, 105793. https://doi.org/10.1016/j.biom....
 
4.
Brookes, P.C., Chen, Y., Chen, L., Qiu, G., Luo, Y., Xu, J., 2017. Is the rate of mineralization of soil organic carbon under micro-biological control? Soil Biology and Biochemistry 112, 127–139. https://doi.org/10.1016/j.soil....
 
5.
Brumme, R., Raubuch, M., Priess, J., Wang, C.P., Anderson, T. 2009. Microbial Biomass. In: Brumme, R., Khanna, P.K. (eds) Functioning and Management of European Beech Ecosystems. Ecological Studies 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b82392....
 
6.
DSTU 7847:2015. Soils Quality. Quantitative determination of microorganisms in soil by the method of sowing on solid media.
 
7.
FAO, 2021. Standard operating procedure for soil organic carbon: Tyurin spectrophotometric method. Rome.
 
8.
Fu, T., Xu, Y., Hou, W., Yi, Z., Xue, S., 2022. Long- term cultivation of Miscanthus and switchgrass accelerates soil organic carbon accumulation by decreasing carbon mineralization in infertile red soil. GCB Bioenergy 14(9), 1065–1077 https://doi.org/10.1111/gcbb.1....
 
9.
He, S., Guo, L., Niu, M., Miao, F., Jiao, SH., Hu, T., Long, M., 2017. Ecological diversity and co-occurrence patterns of bacterial community through soil profile in response to long-term switchgrass cultivation. Scientific Report 7, 3608. https://doi.org/10.1038/s41598....
 
10.
ISO/TS 14256-1:2003. Soil quality – Determination of nitrate, nitrite and ammonium in field-moist soils by extraction with potassium chloride solution. Part 1: Manual method.
 
11.
ISO 11464:2006. Soil quality – Pretreatment of samples for physico-chemical analysis.
 
12.
ISO 18400-206:2018. Soil quality – Sampling – Part 206: Collection, handling and storage of soil under aerobic conditions for the assessment of microbiological processes, biomass and diversity in the laboratory.
 
13.
IUSS Working Group WRB, 2014. World reference base for soil resources. World Soil Resources Reports No. 106. FAO, 189 p.
 
14.
Jastrow, J.D., Amonette, J.E., Bailey, V.L., 2007. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change 80, 5–23. https://doi.org/10.1007/s10584....
 
15.
Kane, J.L., Schartiger, R.G., Daniels, N.K., Freedman, Z.B., Mcdonald, L.M., Skousen, J.G., Morrissey, E.M., 2023. Bioenergy crop Miscanthus x giganteus acts as an ecosystem engineer to increase bacterial diversity and soil organic matter on marginal land. Soil Biology and Biochemistry 186, 10917. https://doi.org/10.1016/j.soil....
 
16.
Katsalirou, E., Deng, S., Gerakis, A., Nofziger, D.L., 2016. Long-term management effects on soil P, microbial biomass P, and phosphatase activities in prairie soils. European Journal of Soil Biology 76, 61–69. https://doi.org/10.1016/j.ejso....
 
17.
Leichty, S.I., Kasanke, C.P., Bell, S.L., Hofmockel, K.S., 2021. Site and bioenergy cropping system similarly affect distinct live and total soil microbial communities. Frontiers in microbiology 12, 725756. https://doi:10.3389/fmicb.2021....
 
18.
Mao, Y.U., Yannarell, A.C, Davis, S.C., Mackie, R.I., 2012. Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil. Environmental microbiology 15(3), 928-942. https://doi.org/10.1111/j.1462....
 
19.
McDaniel, M.D., Tiemann, L.K., Grandy, A.S. 2014. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecological Applications 24(3), 560–570. http://www.jstor.org/stable/24....
 
20.
Patyka, V.P., Taranenko, S.V., Taranenko, A.O., Kalinichenko, A.V. 2014. Microbial biom of different soils and soil-climatic zones of Poltava region. Mikrobiolohichnyĭ zhurnal 76(5), 20–25. http://microbiolj.org.ua/image....
 
21.
Pysarenko, P., Samoilik, M., Taranenko, A., Tsova, Yu., Taranenko, S., 2022a. Microbial remediation of petroleum polluted soil. Agraarteadus 2 XXXIII, 434-442. https://dx.doi.org/10.15159/ja....
 
22.
Pysarenko, P., Samojlik, M., Taranenko, A., Tsova, Yu.I, Horobets, M., Filonenko, S., 2022b. Monitoring of Municipal Solid Waste Landfill Impact on Environment in Poltava Region, Ukraine. Ecological Engineering and Environmental Technology 5, 54–60 https://doi.org/10.12912/27197....
 
23.
Ruf, T., Emmerling, C., 2020. Soil organic carbon allocation and dynamics under perennial energy crops and their feedbacks with soil microbial biomass and activity. Soil Use and Managemant 36, 646–657. https://doi.org/10.1111/sum.12....
 
24.
Taranenko, A., Kulyk, M., Galytska, M., Taranenko, S., 2019. Effect of cultivation technology on switchgrass (Panicum virgatum L.) productivity in marginal lands in Ukraine. Acta Agrobotanica 72(3), 1786. https://doi.org/10.5586/aa.178....
 
25.
Taranenko, A., Kulyk, M., Galytska, M., Taranenko, S., Rozhko, I., 2021. Dynamics of soil organic matter in Panicum virgatum sole crops and intercrops. Zemdirbyste-Agriculture 108 (3), 255–262. https://doi.org/10.13080/z-a.2....
 
26.
Wang, B., Lerdau, M., He, Y., 2017. Widespread production of nonmicrobial greenhouse gases in soils. Global Change Biology 23, 4472–4482. https://doi.org/10.1111/gcb.13....
 
27.
Zahida, P. H., Iqbal, J., Zhang, Q., Chen, D., Wei, HU., Saleem, M., 2020. Continuous cropping alters multiple biotic and abiotic indicators of soil health. Soil Systems 4, 59. https://doi:10.3390/soilsystem....
 
28.
Zhang, CH., Xue, W., Xue, J., Zhang, J., Qiu, L., Chen, X., Hu, F., Kardol, P., Liu, M., 2022. Leveraging functional traits of cover crops to coordinate crop productivity and soil health. Journal of Applied Ecology 59(10), 2627-2641. https://doi.org/10.1111/1365-2....
 
29.
Zhou, X., Gao, D., Liu, J., Qiao, P., Zhou, X., Lu, H., Wu, X., Liu, D., Jin, X., Wu, F., 2014. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system. European Journal of Soil Biology 60, 1–8. https://doi.org/10.1016/j.ejso....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top