PL EN
PRACA ORYGINALNA
Ocena zróżnicowania zasobów węgla organicznego w poziomach próchnicznych gleb płowych obszarów młodoglacjalnych Polski północnej
 
Więcej
Ukryj
1
Faculty of Earth Sciences, Department of Soil Science and Landscape Management, Nicolaus Copernicus University in Toruń, Polska
 
 
Data nadesłania: 12-08-2023
 
 
Data ostatniej rewizji: 08-11-2023
 
 
Data akceptacji: 09-12-2023
 
 
Data publikacji online: 09-12-2023
 
 
Data publikacji: 09-12-2023
 
 
Autor do korespondencji
Marcin Świtoniak   

Faculty of Earth Sciences, Department of Soil Science and Landscape Management, Nicolaus Copernicus University in Toruń, Gagarina 11, 87-100, Toruń, Polska
 
 
Soil Sci. Ann., 2023, 74(4)176684
 
SŁOWA KLUCZOWE
STRESZCZENIE
Gleby płowe (Luvisole / Retisole wg WRB) stanowią główny komponent pokrywy glebowej Polski. Ze względu na powszechność występowania i stosunkowo wysoką żyzność mają kluczowe znaczenie dla krajowej produkcji żywności. Rolnicze użytkowanie tych gleb prowadzi jednak do silnych przekształceń, a w wielu przypadkach do ich degradacji. Jest to szczególnie ważne w młodoglacjalnych krajobrazach morenowych Polski północnej. Intensywna rzeźba terenu w połączeniu z użytkowaniem rolniczym prowadzi do ogławiania gleb płowych, co może prowadzić do spadku zawartość węgla organicznego w glebie. Celem prezentowanej pracy jest ocena ogólnych zasobów węgla organicznego w poziomach ornych gleb płowych oraz ich zróżnicowania między najczęściej występującymi podtypami (wg Systematyki gleb Polski 2019). Badaniami objęto 72 profile glebowe. Średnie zasoby były stosunkowo niskie – 3.28 kg·m-2, co można wiązać zarówno z uwarunkowaniami naturalnymi omawianych gleb, jak i silnymi przekształceniami antropogenicznymi. Pojedyncze „atrybuty podtypów”, choć wyrażają różnorodność gleb płowych, nie odzwierciedlają zróżnicowania zasobów próchnicy. Zasoby węgla organicznego różnią się jednakże statystycznie w poszczególnych podtypach określanych za pomocą maksymalnie dwóch najważniejszych atrybutów podtypów. Największe zasoby (4.12 kg·m-2) odnotowano w glebach płowych próchnicznych stagnoglejowych (Stagnic Luvisols/Retisols) charakteryzujących się stosunkowo dużą wilgotnością i niewielkimi przekształceniami erozyjnymi. Gleby ogłowione (Ap-Bt-C(k)) zostały podzielone na dwa podtypy – erodowane próchniczne i erodowane (Haplic Luvisols). Podtyp zerodowany próchniczny odznaczał się dość wysokimi średnimi zasobami węgla – 3.61 kg·m-2, drugi podtyp gleb erozyjnych miał wyjątkowo niskie wartości średnie – 1.40 kg·m-2. Tak duże zróżnicowanie może wynikać z różnego tempa erozji w poszczególnych profilach oraz szczególnie w przypadku gleb płowych zerodowanych próchnicznych - regeneracyjnego, zrównoważonego zarządzania (np. uprawy pasowe, winnice, użytki zielone) prowadzącego do odbudowy zasobów próchnicy. Niskie zasoby (2.24 kg·m-2) odnotowano także w glebach płowych typowych, których poziomy próchniczne również zostały zdegradowane przez erozję. Niewielkimi przekształceniami erozyjnymi i przeciętnymi zasobami – 3.57 kg·m-2 charakteryzował się podtyp gleb płowych dwudzielnych próchnicznych (Abruptic Luvisols / Haplic Planosols). Dalsze badania wymagają rozbudowy bazy danych. Ważnym aspektem jest również zasobność w węgiel organiczny głębszych poziomów genetycznych.
 
REFERENCJE (93)
1.
Armolaitis, K., Varnagirytė-Kabašinskienė, I., Žemaitis, P., Stakėnas, V., Beniušis, R., Kulbokas, G., Urbaitis, G. 2022. Evaluation of organic carbon stocks in mineral and organic soils in Lithuania. Soil Use Manage 38, 355–368. https://doi.org/10.1111/sum.12....
 
2.
Adhikari, K, Hartemink, A.E., Minasny, B., Bou Kheir, R., Greve, M.B., Greve, M.H. 2014. Digital Mapping of Soil Organic Carbon Contents and Stocks in Denmark. PLoS ONE 9(8), e105519. https://doi:10.1371/journal.po....
 
3.
Batjes, N.H., 1998. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil. Biology and Fertility of Soils 27, 3, 230–235. https://doi.org/10.1007/s00374....
 
4.
Bednarek, R., Prusinkiewicz, Z., 1997. Geografia gleb. PWN, Warszawa. pp. 287. (in Polish).
 
5.
Blecharczyk, A., Małecka, I., Sierpowski, J., 2007. Long-term effects of tillage systems on physico-chemical soil properties. Fragmenta Agronomica 1, 93, 7–13. (in Polish with English summary).
 
6.
Błońska, E., Lasota, J., 2017. Soil Organic Matter Accumulation and Carbon Fractions along a Moisture Gradient of Forest Soils. Forests 8, 448. https://doi.org/10.3390/f81104....
 
7.
Burghardt, W., Heintz, D., Hocke, N., 2018. Soil Fertility Characteristics and Organic Carbon Stock in Soils of Vegetable Gardens Compared with Surrounding Arable Land at the Center of the Urban and Industrial Area of Ruhr, Germany. Eurasian Soil Science 51, 1067–1079. https://doi.org/10.1134/S10642....
 
8.
Chojnicki, J., 1993. Lessives soils developed from superficial formations of the Błonie-Sochaczew Plain. Roczniki Gleboznawcze – Soil Science Annual 44(3/4), 135–151. (in Polish with English summary).
 
9.
FAO and ITPS. 2020. Global Soil Organic Carbon Map V1.5: Technical report. Rome, FAO. https://doi.org/10.4060/ca7597....
 
10.
Gomes, L.C., Faria, R.M., de Souza, E., Veloso, G.V., Schaefer, C.E.G., Fernandes Filho, E.I., 2019. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 340, 337-350. https://doi.org/10.1016/j.geod....
 
11.
Greinert, A., Drab, M., Śliwińska, A., 2018. Storage capacity of organic carbon in the reclaimed post-mining Technosols. Environment Protection Engineering 44, 1, 117–127. https://doi.org/10.5277/epe180....
 
12.
Gus-Stolarczyk, M., Drewnik, M., Michno, A., Szymański, W., 2023. The origin and transformation of soil lamellae in calcareous and non-calcareous loess soils in the Central European loess belt – A case study from southern Poland. Catena 232, 107399, https://doi.org/10.1016/j.cate....
 
13.
Hateffard, F., Balog, K., Tóth, T., Mészáros, J., Árvai, M., Kovács, Z.A., Szatmári, G., 2022. High-Resolution Mapping and Assessment of Salt-Affectedness on Arable Lands by the Combination of Ensemble Learning and Multivariate Geostatistics. Agronomy 12, 8, 1858. https://doi.org/10.3390/agrono....
 
14.
Hateffard, F., Szatmári, G., Novák, T.J., 2023. Applicability of machine learning models for predicting soil organic carbon content and bulk density under different soil conditions. Soil Science Annual 74(1), 165879. https://doi.org/10.37501/soils....
 
15.
Intergovernmental Panel on Climate Change (IPCC), 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Egglestone, H.S., Buendia,, L., Miwa, K., Ngara, T. Tanabe, K. (Eds.). Intergovernmental Panel on Climate Change (IPCC), IPCC/IGES, Hayama, Japan.
 
16.
IUSS Working Group WRB. 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
 
17.
Jadczyszyn, J., Bartosiewicz, B., 2020. Procesy osuszania i degradacji gleb. Studia i Raporty IUNG-PIB 64(18), 49–60. https://doi.org/10.26114/sir.i....
 
18.
Jarmain, C., Cummins, T., Jovani-Sancho, A.J., Nairn, T., Premrov, A., Reidy, B., Renou-Wilson, F., Tobin, B., Walz, K., Wilson, D., Byrne, K.A. 2023. Soil organic carbon stocks by soil group for afforested soils in Ireland. Geoderma Regional 32, e00615. https://doi.org/10.1016/j.geod....
 
19.
Jaskulska, J., Jaskulski, D., 2003. Influence of many years’ fertilization on the dynamics of soil properties. Postępy Nauk Rolniczych 4. 21–35. (in Polish with English summary).
 
20.
Jonczak, J., 2013. Soil organic matter properties in Stagnic Luvisols under different land use types. Acta Agrophysica 20(4), 565–575.
 
21.
Józefowska, A., Miechówka, A., 2011. Comparison of the results of determining the organic carbon in soils of the Carpathian Foothills obtained by the Tiurin and dry combustion method (thermal method). Roczniki Gleboznawcze – Soil Science Annual 62(1), 65-69. (in Polish with English summary).
 
22.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł., Waroszewski, J., 2019. Polish Soil Classification, 6th edition – principles, classification scheme and correlations. Soil Science Annual 70(2), 71–97. https://doi.org/10.2478/ssa201....
 
23.
Kalembasa, D., Kalembasa, D., 2011. Fractions of nitrogen and carbon in humus horizons of arable luvisols and cambisols located on Siedlce Upland. Acta Agrophysica 18, 1, 7–16. (in Polish with English summary).
 
24.
Karasiewicz, T., Hulisz, P., Noryśkiewicz, A. M., Stachowicz-Rybka, R., 2019. Post-glacial environmental history in NE Poland based on sedimentary records from the Dobrzyń Lakeland. Quaternary International 501, A, 193–207. https://doi.org/10.1016/j.quai....
 
25.
Kerr, D.D., Ochsner, T.E., 2020. Soil organic carbon more strongly related to soil moisture than soil temperature in temperate grasslands. Soil Science Society of America Journal 84, 587–596. https://doi.org/10.1002/saj2.2....
 
26.
Kobierski, M., Wojtasik., 2009. Organic and inorganic carbon densities in arable and orchard soils in selected mesoregions of the South-Baltic Lakeland. Roczniki Gleboznawcze – Soil Science Annual 60, 4, 57–64. (in Polish with English summary).
 
27.
Kobierski, M., Kondratowicz-Maciejewska, K., Kociniewska, K., 2015. Soil quality assessment of Phaeozems and Luvisols from the Kujawy region (central Poland). Soil Science Annual, 66(3), 111–118. https://doi.org/10.1515/ssa-20....
 
28.
Kondracki, J., 2009. Geografia regionalna Polski. Wydawnictwo Naukowe PWN, Warszawa.
 
29.
Konecka-Betley, K., Borek, S., Czarnowska, K., Kępka, M., Królowa, H., Łakomiec, I., Kobylińska, J. 1970. Effect of process of gleization from top on forming soils developed of boulder loam. Roczniki Gleboznawcze – Soil Science Annual 21(1), 21–50. (in Polish with English summary).
 
30.
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World Map of Köppen-Geiger Climate Classification updated. Meteorologische Zeitschrift 15, 259–263. https://doi.org/10.1127/0941-2....
 
31.
Krauss, M., Wiesmeier, M., Don, A., Cuperus, F., Gattinger, A., Gruber, S., Haagsma, W. K., Peigné, J., Palazzoli, M., C., Schulz, F., van der Heijden, M. G.A., Vincent-Caboud, L., Wittwer, R. A., Zikeli, S., Steffens, M., 2022. Reduced tillage in organic farming affects soil organic carbon stocks in temperate Europe. Soil and Tillage Research 216, 105262. https://doi.org/10.5167/uzh-21....
 
32.
Kuźnicki, F., Skłodowski, P. 1979. Content of various forms of humus substances in pseudogleyed lessives soils with reference to the content of free iron and free aluminium. Roczniki Gleboznawcze – Soil Science Annual 30(2), 33–44. (in Polish with English summary).
 
33.
Lal, R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma 123(1–2), 1–22. https://doi.org/10.1016/j.geod....
 
34.
Loba, A., Waroszewski, J., Tikhomirov, D., Calitri, F., Christl, M., Sykuła. M., Egli, M., 2021. Tracing erosion rates in loess landscape of the Trzebnica Hills (Poland) over time using fallout and cosmogenic nuclides. Journal of Soils and Sediments 21, 2952–2968. https://doi.org/10.1007/s11368....
 
35.
Loba, A., Zhang, J., Tsukamoto, S., Kasprzak, M., Kowalska, J., Frechen, M., Waroszewski, J., 2023. Multiproxy approach to the reconstruction of soil denudation events and the disappearance of Luvisols in the loess landscape of south-western Poland. Catena 220, 1–14. https://doi.org/10.1016/j.cate....
 
36.
Łabęda, D., Kondras, M., 2020. Influence of forest management on soil organic carbon stocks. Soil Science Annual 71(2), 165–173. https://doi.org/10.37501/soils....
 
37.
Maia, S.,M.,F., Xavier, F.,A.,S., Oliveira, T.,S., Mendonça, E.,S., Filho, A., A., 2007. Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil. Agroforestry Systems 71, 127–138. https://doi.org/10.1007/s10457....
 
38.
Marcinek, J., Komisarek, J., 1993. Przestrzenna ocena zawartości i zasobów materii organicznej w glebach w nawiązaniu do krajobrazów glebowych Wielkopolski (Spatial evaluation of soil organic matter content and its accumulation with reference to the Wielkopolska soil landscapes). Zeszyty Problemowe Postępów Nauk Rolniczych 411, 113–122. (in Polish with English summary).
 
39.
Marcinek, J., Komisarek, J., 2004. Antropogeniczne przekształcenia gleb Pojezierza Poznańskiego na skutek intensywnego użytkowania rolniczego. AR. Poznań.
 
40.
Markiewicz, M., Świtoniak, M., Bednarek, R., Gonet, S., 2014. Zasoby materii organicznej. [w:] Antropogeniczne przekształcenia pokrywy glebowej Brodnickiego Parku Krajobrazowego.[red.] Świtoniak M., Jankowski M., Bednarek R., Wydawnictwo Naukowe UMK, Toruń, 129–140.
 
41.
Marks, L., 2012. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quaternary Science Reviews 44, 81–88. https://doi.org/10.1016/j.quas....
 
42.
Miechówka. A., Gąsiorek, M., Józefowska. A., Zadrożny. P., 2012. Carbon stocks in Little and Silesian Beskids soils agricultural use. Polish Journal of Soil Science. Soil Chemistry 55(2), 185–195.
 
43.
Mroczek, P., 2018. Late Vistulian-Holocene Evolution of Loess Luvisols from the South Polish Uplands Recorded in Micromorphology. Wydawnictwo UMCS, Lublin, 109 pp.,.
 
44.
Muñoz-Rojas, M., Jordán, A., Zavala, L. M., De la Rosa, D., Abd-Elmabod, S. K., Anaya-Romero, M., 2012. Organic carbon stocks in Mediterranean soil types under different land uses (Southern Spain). Solid Earth 3, 375–386. https://doi.org/10.5194/se-3-3....
 
45.
Musztyfaga, E., Kabała, C., 2015. Lithological discontinuity in Glossic Planosols (Albeluvisols) of Lower Silesia (SW Poland). Soil Science Annual 66(4), 180–190. https://doi.org/10.1515/ssa-20....
 
46.
Niewiarowski, W., 1959. Glacial forms and types of deglaciations on the moraine plateau of Chełmno (Bydgoszcz district). Studia Soc. Sci. Torun. Section C, 1, 4, Toruń. (In Polish with English summary).
 
47.
Niewiarowski, W., Wysota, W., 1986. Moraine plateau levels of the Brodnica Moraine Plateau and their genesis. AUNC. Geography 19(60), 39–46. (in Polish with English summary).
 
48.
Pietrzak, S., Hołaj-Krzak, J.T., 2022. The content and stock of organic carbon in the soils of grasslands in Poland and the possibility of increasing its sequestration. Journal of Water and Land Development 54(7–9), 68–7. 6. https://doi.org/10.24425/jwld.....
 
49.
Pikuła, D., 2019. Praktyki zapobiegające stratom węgla organicznego z gleby. Studia i Raporty IUNG-PIB, 59, 13, 77–91. https://doi.org/10.26114/sir.i....
 
50.
Pińskwar, I., Choryński, A., Kundzewicz, Z.W., 2020. Severe Drought in the Spring of 2020 in Poland—More of the Same? Agronomy 10, 1646. https://doi.org/10.3390/agrono....
 
51.
Podlasiński, M., 2013. Denudation of Antropogenic Impact on the Diversity of Soil Cover and Its Spatial Structure in the Agricultural Landscape of Moraine; West Pomeranian University of Technology: Szczecin, Poland. (In Polish with English Summary).
 
52.
Poeplau, C., Vos, C., Don, A., 2017. Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content. Soil 3, 61–66. https://doi.org/10.5194/soil-3....
 
53.
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B., Ribeiro, E., Rossiter, D., 2021. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty, Soil 7(1), 217–240, https://doi.org/10.5194/soil-7....
 
54.
Polish Soil Classification (Systematyka Gleb Polski), 2019. Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław – Warszawa, 235 pp.
 
55.
Porębska, G., Borzyszkowski, J., Gozdowski, D., 2021. Changes in organic carbon stocks in soils under Scots pine (Pinus sylvestris L.) stands in northern Poland over 26 years. Soil Science Annual 72(2), 140622. https://doi.org/10.37501/soils....
 
56.
Radziuk, H., Świtoniak, M., 2021. Soil erodibility factor (K) in soils under varying stages of truncation. Soil Science Annual 72(1), 134621. https://doi.org/10.37501/soils....
 
57.
Radziuk, H., Świtoniak, M., 2022. The Effect of Erosional Transformation of Soil Cover on the Stability of Soil Aggregates within Young Hummocky Moraine Landscapes in Northern Poland. Agronomy 12(11), 2595. https://doi.org/10.3390/agrono....
 
58.
Scharlemann, J. PW., Tanner, E. VJ., Hiederer, R., Kapos, V., 2014. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management 5(1), 81–91. https://doi.org/10.4155/cmt.13....
 
59.
Sewerniak, P., Markiewicz, M., Tarnawska, P. Marta, W., 2023. Environmental effects of a management method used after fire on development of temperate Scots pine ecosystem: a 15-year study from Poland. Environmental Management https://doi.org/10.1007/s00267....
 
60.
Sinkiewicz, M., 1998. The Development of Anthropogenic Denudation in Central Part of Northern Poland; Nicolaus Copernicus University: Toruń, Poland. (In Polish with English Summary).
 
61.
Solon, J., Borzyszkowski, J., Bidłasik, M., Richling, A., Badora, K., Balon, J., Brzezińska-Wójcik, T., Chabudziński, Ł., Dobrowolski, R., Grzegorczyk, I., Jodłowski, M., Kistowski, M., Kot, R., Krąż, P., Lechnio, J., Macias, A., Majchrowska, M., Malinowska, E., Migoń, P., Myga-Piątek, U., Nita, J., Papińska, E., Rodzik, J., Strzyż, M., Terpiłowski, S., Ziaja, W., 2018. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geographia Polonica 91(2), 143–170. https://doi.org/GPol.0115.
 
62.
Sosulski, T., Szara, E., Stępień, W., 2013. Dissolved organic carbon in Luvisol under different fertilization and crop rotation. Soil Science Annual 64(3), 114–119. https://doi.org/10.2478/ssa-20....
 
63.
Sowiński, P., Smólczyński, S., Orzechowski, M., Kalisz, B., Bieniek, A., 2023, Effect of Soil Agricultural Use on Particle-Size Distribution in Young Glacial Landscape Slopes. Agriculture 13, 584. https://doi.org/10.3390/agricu....
 
64.
Suuster, E., Ritz, C., Roostalu, H., Reintam, E., Kõlli, R., Astover, A., 2011. Soil bulk density pedotransfer functions of the humus horizon in arable soils. Geoderma 163(1-2), 74–82. https://doi.org/10.1016/j.geod....
 
65.
Sykuła, M., Jankowski, M., Mendyk, Ł., Dąbrowski, M., Jasińska, J., Michalak, J., Michalski, A., Pindral, S., Bednarek, R., 2019. Wczoraj i dziś Mapy gleb Polski 1300 000 – próba adaptacji do Systematyki gleb Polski 2019 (SGP6). W 30. Kongres Polskiego Towarzystwa Gleboznawczego – Gleba źródłem życia, Bartmiński P., Dębicki R. (red.). Uniwersytet Marii Curie-Skłodowskiej w Lublinie, Lublin, 108–109.
 
66.
Sytek, J., 1972. Humus content and its occurrence forms in soils lessives. Part I. Distribution of humus substances in soils lessives developed of sands and light loams. Roczniki Gleboznawcze – Soil Science Annual 23(1), 189–222. (in Polish with English summary).
 
67.
Szopka, K., Kabała, C., Karczewska, A., Jezierski, P., Bogacz, A., Waroszewski, J., 2016. The pools of soil organic carbon accumulated in the surface layers of forest soils in the Karkonosze Mountains, SW Poland. Soil Science Annual 67(2), 46–56. https:// doi.org/ 10.1515/ssa-2016-0007.
 
68.
Szymański, W., Skiba, M. 2013. Distribution, morphology, and chemical composition of Fe-Mn nodules in Albeluvisols of the Carpathian Foothills, Poland. Pedosphere 23(4), 445–454. https://doi.org/10.1016/S1002-....
 
69.
Świtoniak, M., 2006. Different pedogenesis conditioned by lithology of texture-contrast soils in Brodnica Lake District, in: Gierszewski, P., Karasiewicz, M. (Eds.), Ideas and practical universalism of geography. Geographical documentation. 32, 278–285. (in Polish).
 
70.
Świtoniak, M., 2007. Ocena wartości ekologicznej gleb o dwudzielnym uziarnieniu w aspekcie zrównoważonego gospodarowania obszarami leśnymi Brodnickiego Parku Krajobrazowego (Assessment of the ecological value of soils with bipartite grain size in terms of sustainable management of forest areas of the Brodnica Landscape Park). [In:] Marszelewski, W., Kozłowski, L. [Eds.], Protection and development of Drwęca. UMK, Toruń, 335–344.
 
71.
Świtoniak, M., 2008. Classification of young glacial soils with vertical texture-contrast using WRB system. Agrochimija i Gruntoznawstwo 69, 96–101.
 
72.
Świtoniak, M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116, 173–184. https://doi.org/10.1016/j.cate....
 
73.
Świtoniak, M., 2021. Rustification as a collateral process in clay-illuvial soils of northern Poland. Soil Science Annual 72(4), 143444. https://doi.org/10.37501/soils....
 
74.
Świtoniak, M., Hulisz, P., Kałucka, I., Różański, S. 2011. Role of Scots pine monocultures on the formation of organic carbon resources in soils on an external dumping ground of the Bełchatów open-cast lignite mine. Roczniki Gleboznawcze – Soil Science Annual 62(2), 395–405. (in Polish with English summary).
 
75.
Świtoniak, M., Dąbrowski, M., Łyszkiewicz, A., 2015. The Influence of Human-induced Erosion on the Soil Organic Carbon Stock in Vineyards of Fordon Valley. Polish Journal of Soil Science 48(2), 197–211.
 
76.
Świtoniak, M., Mroczek, P., Bednarek, R., 2016. Luvisols or Cambisols? Micromorphological study of soil truncation in young morainic landscapes — Case study: Brodnica and Chełmno Lake Districts (North Poland). Catena 137, 583–595. https://doi.org/10.1016/j.cate....
 
77.
Świtoniak, M., Michalski, A., Markiewicz, M., 2022. Classification of alluvial soils - problematic issues on the examples from South Baltic Lakelands, north Poland. Soil Science Annual, 2022, 73, 3, 157099. https://doi.org/10.37501/soils....
 
78.
Tomczyk, A.M., Bednorz, E., 2022. Atlas klimatu Polski (1991–2020). Bogucki Wydawnictwo Naukowe. Poznań.
 
79.
Uggla, H., Ferczyńska, Z. 1975. Studies on properties of rain-gley soils under deciduous forests in hilly areas of the Mazurian Lakeland. Roczniki Gleboznawcze – Soil Science Annual 26(1), 3–26. (in Polish with English summary).
 
80.
USDA Natural Resources Conservation Service, 2008, Soil Quality Indicators. Bulk Density. Missouri.
 
81.
Varnagirytė-Kabašinskienė, I., Žemaitis, P., Armolaitis, K., Stakėnas, V., Urbaitis, G. 2021. Soil Organic Carbon Stocks in Afforested Agricultural Land in Lithuanian Hemiboreal Forest Zone. Forests 12, 1562. https://doi.org/10.3390/f12111....
 
82.
Wang, H., Wang, S., Yu, Q., Zhang, Y., Wang, R., Li, J., Wang, X., 2020. No tillage increases soil organic carbon storage and decreases carbon dioxide emission in the crop residue-returned farming system. Journal of Environmental Management 1, 261, 110261. https://doi.org/10.1016/j.jenv....
 
83.
Waroszewski, J., Pietranik, A., Sprafke, T., Kabała, C., Frechen, M., Jary, Z., Kot, A., Tsukamoto, S., Meyer-Heintz, S., Krawczyk, M., Łabaz, B., Schultz, B., & Erban Kochergina, Y. V. 2021. Provenance and paleoenvironmental context of the Late Pleistocene thin aeolian silt mantles in southwestern Poland – A widespread parent material for soils. Catena 204, 1–13. https://doi.org/10.1016/j.cate....
 
84.
Wiesmeier, M., Barthold, F., Spörlein, P., Geuß, U., Hangen, E., Reischl, A., Schilling, B., Angst, G., Lützow, M.V., & Kögel‐Knabner, I. 2014. Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany). Geoderma Regional 1, 67–78. https://doi.org/10.1016/J.GEOD....
 
85.
Wiśniewski, P., Märker, M., 2021. Comparison of Topsoil Organic Carbon Stocks on Slopes under Soil-Protecting Forests in Relation to the Adjacent Agricultural Slopes. Forests 12, 390. https://doi.org/10.3390/f12040....
 
86.
Woronko, B., Karasiewicz, T.M., Rychel, J., Kupryjanowicz, M., Fiłoc, M., Moska, P., Adamczyk, A., Demitroff, M.N. 2022, A palaeoenvironmental record of MIS 3 climate change in NE Poland—Sedimentary and geochemical evidence. Quaternary International 617, 80–100. https://doi.org/10.1016/j.quai....
 
87.
Yitbarek, T., 2019. Carbon Stock of Luvisols as Influenced by Cropping System of Abela Lida, Southern Ethiopia. Agricultural Research and Technology 21(3), 556164. https://doi.org/10.19080/ARTOA....
 
88.
Zasoński, S., 1974. Micromorphological and chemical studies on the process of lessivage in fine sand soils. Part I. Loess soils of the Krakow Plateau. Roczniki Gleboznawcze – Soil Science Annual 25(3), 55–82. (in Polish with English summary).
 
89.
Zasoński, S., 1979. Micromorphological properties and the chief pedogenetic processes of some soils on the weathering waste of the Wieliczka foothills. Roczniki Gleboznawcze – Soil Science Annual 30(2), 163–184. (in Polish with English summary).
 
90.
Zasoński, S., 1981. Chief soil-forming processes on very fine sand rocks of the Wieliczka Foothills. Part I. General description of soils and some of their chemical properties. Roczniki Gleboznawcze – Soil Science Annual 32(2), 113–141. (in Polish with English summary).
 
91.
Zasoński, S., 1983. Chief soil-forming processes on very-fine-sand rocks of the Wieliczka Foothills. Part II. Micromorphological properties. Roczniki Gleboznawcze – Soil Science Annual 34(4), 123–158. (in Polish with English summary).
 
92.
Zomer, R.J., Bossio, D.A., Sommer, R., Verchot, L.V., 2017, Global Sequestration Potential of Increased Organic Carbon in Cropland Soils. Scientific Reports 7, 15554. https://doi.org/10.1038/s41598....
 
93.
Zwydak, M., Blońska, E., Lasota, J., 2017. Organic carbon accumulation in soil of different forest site types. Sylwan 161(1), 62−70.
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top