PL EN
ORIGINAL PAPER
Application of portable colorimeter for identification of mollic horizon and mollic-based soil groups
 
More details
Hide details
1
Instytut Nauk o Glebie, Żywienia Roślin i Ochrony Środowiska, Uniwersytet Przyrodniczy we Wrocławiu, Polska
 
 
Submission date: 2023-08-20
 
 
Final revision date: 2023-10-03
 
 
Acceptance date: 2023-11-08
 
 
Online publication date: 2023-11-08
 
 
Publication date: 2023-12-07
 
 
Corresponding author
Cezary Kabała   

Instytut Nauk o Glebie, Żywienia Roślin i Ochrony Środowiska, Uniwersytet Przyrodniczy we Wrocławiu, Norwida 25, 50-375, Wrocław, Polska
 
 
Soil Sci. Ann., 2023, 74(3)175008
 
KEYWORDS
ABSTRACT
Identification of soil colours, which have crucial importance as diagnostic criteria for mollic horizon and mollic-based soil groups, is considered to be impacted by personal skill and experience of the researcher. The experiment with soil colour identification in the field using standard Munsell charts and the laboratory identification by four groups of experts, as well as using the electronic portable colorimeter was conducted using 30 loess- and alluvium-derived soils. The manual field identification of mollic horizons by individual highly experienced researcher, based on colour value and chroma (using the Munsell charts), may be overestimated up to 17% compared to manual identification by group of experts under laboratory conditions. The differences between groups of experts were statistically insignificant; however, a weak tendency to identify the lower value (dry) and higher chroma (moist) with increasing expert age or experience was observed (in the order: MSc students – PhD students – doctors – professors). No significant difference in soil colour identification was observed in relation to gender of experts. An electronic measurement of soil colours by portable colorimeter confirmed an overestimation of the manual identification of mollic horizons by 17% and 7%, compared to individual (field) and group (lab) recognition, respectively. The study confirmed the suitability of standard portable colorimeter for the verification of colours required for mollic horizon, in particular in soils those colour values are close to the classification threshold and their manual recognition depends on individual expert’s skills.
 
REFERENCES (60)
1.
Arnold, R.W., 2006. Soil survey and soil classification. [In:] Grunwald, S. (Ed.), Environmental soil-landscape modeling: Geographic information technologies and pedometrics. Taylor & Francis Group, Boca Raton, FL, 37–60.
 
2.
Ayala-Niño, F., Maya-Delgado, Y., Salamanca-Sánchez, M., Troyo-Diéguez, E., 2022. Soils of the southern tip of the Baja California Peninsula: An example from drylands in Northwest Mexico. In: Świtoniak, M., Charzyński, P. (Eds.) Soil Sequences Atlas V. Uniwersytet Mikołaja Kopernika, Toruń, Poland, 11–26.
 
3.
Barajas, A., Ceron, A., 2022. Soils of coffee agroforestry systems in Southern Mexico. [In:] Świtoniak, M., Charzyński, P. (Eds.), Soil Sequences Atlas V. Uniwersytet Mikołaja Kopernika, Toruń, Poland, 27–45.
 
4.
Bosten, J.M., 2022. Do you see what I see? Diversity in human color perception. Annual Review of Vision Science 8, 101–133. https://doi.org/10.1146/annure....
 
5.
Chen, J., Yuan, D., Yan, Z., Lü, Y., Weng, Q., Fu, H., Zhang, J., 2019. Comparison between Colorimeter and New Standard Soil Colour Chart of China in Determining Munsell Color of Soils – A case study of Central Sichuan Hilly Region. Acta Pedologica Sinica 1, 78–89. https://doi.org/10.11766/trxb2....
 
6.
Czigány, S., Novák, T.J., Pirkhoffer, E., Nagy, G., Lóczy, D., Dezső, J., Fábián, S.Á, Świtoniak, M., Charzyński, P., 2020. Application of a topographic pedosequence in the Villány Hills for terroir characterization. Hungarian Geographical Bulletin 69(3), 245–261. https://doi.org/10.15201/hunge....
 
7.
Deumlich, D., Schmidt, R., Sommer, M., 2010. A multiscale soil–landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes. Journal of Plant Nutrition and Soil Science 173, 843–851. https://doi.org/10.1002/jpln.2....
 
8.
Drewnik, M., Żyła, M., 2019. Properties and classification of heavily eroded post-chernozem soils in Proszowice Plateau (southern Poland). Soil Science Annual 70, 225–233. https://doi.org/10.2478/ssa-20....
 
9.
Durn, G., Perković, I., Razum, I., Ottner, F., Škapin, S.D., Faivre, S., Rubinić, V., 2023. A tropical soil (Lixisol) identified in the northernmost part of the Mediterranean (Istria, Croatia). Catena 228, 107144. https://doi.org/10.1016/j.cate....
 
10.
FAO, 2022. Global status of black soils. Rome. https://doi.org/10.4060/cc3124....
 
11.
Galović, L., Husnjak, S., Šorša, A., Lazar, J.M., 2023. Evidence and mineralogical and physico-chemical properties of chernozem and chernozem-like soils in Croatia. Geologia Croatica 76(3), 113–129. https://doi.org/10.4154/gc.202....
 
12.
Gholizadeh, A., Saberioon, M., Rossel, R. A.V., Boruvka, L., Klement, A., 2020. Spectroscopic measurements and imaging of soil colour for field scale estimation of soil organic carbon. Geoderma 357, 113972. https://doi.org/10.1016/j.geod....
 
13.
Gus-Stolarczyk, M., Drewnik, M., Michno, A., Szymański, W., 2023. The origin and transformation of soil lamellae in calcareous and non-calcareous loess soils in the Central European loess belt–A case study from southern Poland. Catena 232, 107399. https://doi.org/10.1016/j.cate....
 
14.
Ibáñez-Asensio, S., Marques-Mateu, A., Moreno-Ramón, H., Balasch, S., 2013. Statistical relationships between soil colour and soil attributes in semiarid areas. Biosystems Engineering 116(2), 120–129. https://doi.org/10.1016/j.bios....
 
15.
IUSS Working Group WRB, 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. International Union of Soil Sciences (IUSS), Vienna, Austria.
 
16.
Jaint, N., Verma, P., Mittal, S., Mittal, S., Singh, A. K., Munjal, S., 2010. Gender based alteration in color perception. Indian Journal of Physiological Pharmacology 54(4), 366–70.
 
17.
Jankowski, M., Bednarek, R., 2021. Rusty soil–gleba rdzawa–Soil of the Year 2021 in Poland. Concepts of genesis, classification and regularities of geographical distribution. Soil Science Annual 72(4), 145585. https://doi.org/10.37501/soils....
 
18.
Jonczak, J., Parzych, A., Sztabkowski, K., 2022. Soil-forming processes and properties of soils developed from fluvic materials in the headwater river valleys of Middle Pomerania, north Poland: A case study of the Kamienna stream. Soil Science Annual 73, 156044. https://doi.org/10.37501/soils....
 
19.
Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Waroszewski, J., 2019. Polish soil classification: Principles, classification scheme and correlations. Soil Science Annual 70, 71–97. https://doi.org/10.2478/ssa-20....
 
20.
Kabała, C., Charzyński, P., Czigány, S., Novák, T.J., Saksa, M., Świtoniak, M., 2019. Suitability of World Reference Base for Soil Resources (WRB) to describe and classify chernozemic soils in Central Europe. Soil Science Annual 70, 244–257. https://doi.org/10.2478/ssa-20....
 
21.
Kabala, C., Musztyfaga, E., Jary, Z., Waroszewski, J., Gałka, B., Kobierski, M., 2022. Glossic Planosols in the postglacial landscape of Central Europe: Modern polygenetic soils or subaerial palaeosols?. Geoderma 426, 116101. https://doi.org/10.1016/j.geod....
 
22.
Karklins, A., 2005. Soil information in Latvia. Soil Resources of Europe, 2nd edition. [In:] Jones R.J.A., Houskova, B., Bullock, P., Montanarella, L.(Eds). European Soil Bureau Research Report (9), 201–209.
 
23.
Kawalko, D., Jezierski, P., Kabala, C., 2021. Morphology and physicochemical properties of alluvial soils in riparian forests after river regulation. Forests 12(3), 329. https://doi.org/10.3390/f12030....
 
24.
Khitrov, N., Smirnova, M., Lozbenev, N., Levchenko, E., Gribov, V., Kozlov, D., Koroleva, P., 2019. Soil cover patterns in the forest-steppe and steppe zones of the East European Plain. Soil Science Annual 70(3), 198–210. https://doi.org/10.2478/ssa-20....
 
25.
Kirillova, N.P., Grauer-Gray, J., Hartemink, A.E., Sileova, T. M., Artemyeva, Z.S., Burova, E.K., 2018. New perspectives to use Munsell color charts with electronic devices. Computers and Electronics in Agriculture 155, 378–385. https://doi.org/10.1016/j.comp....
 
26.
Kobza, J., 2022. Mollic soils situated in non-Chernozem regions in Slovakia. Agriculture 68, 25–33. https://doi.org/10.2478/agri-2....
 
27.
Koné, B., Bongoua-Devisme, A.J., Kouadio, K.H., Kouadio, K.F., Traoré, M.J., 2014. Potassium supplying capacity as indicated by soil colour in Ferralsol environment. Basic Research Journal of Soil and Environmental Science 2(4), 46–55.
 
28.
Krupski, M., Kabala, C., Sady, A., Gliński, R., Wojcieszak, J., 2017. Double-and triple-depth digging and Anthrosol formation in a medieval and modern-era city (Wrocław, SW Poland). Geoarchaeological research on past horticultural practices. Catena 153, 9–20. https://doi.org/10.1016/j.cate....
 
29.
Łabaz, B., Kabała, C., 2014. Origin, properties and classification of' black earths in Poland. Soil Science Annual 65, 80–90. https://doi.org/10.2478/ssa-20....
 
30.
Łabaz, B., Kabała, C., 2016. Human-induced development of mollic and umbric horizons in drained and farmed swampy alluvial soils. Catena 139, 117–126. https://doi.org/10.1016/j.cate....
 
31.
Łabaz, B., Kabała, C., Dudek, M., Waroszewski, J., 2019. Morphological diversity of chernozemic soils in south-western Poland. Soil Science Annual 70(3), 211–224. https://doi.org/10.2478/ssa-20....
 
32.
Łabaz, B., Waroszewski, J., Dudek, M., Bogacz, A., Kabala, C., 2022. Persistence of arable Chernozems and Chernic Rendzic Phaeozems in the eroded undulating loess plateau in Central Europe. Catena 216, 106417. https://doi.org/10.1016/j.cate....
 
33.
Łachacz, A., Załuski, D., 2023. The usefulness of the Munsell colour indices for identification of drained soils with various content of organic matter. Journal of Soils and Sediments 23:4017–4031. https://doi.org/10.1007/s11368....
 
34.
Linné C. V., 1748. Systema Naturae Sistens Regna Tria Naturae, in Classes et Ordines Genera et Species Redacta Tabulisque Aeneis Illustrata. Kiesewetterus, Lipsiae (Leipzig), 257 pp.Loaiza-Usuga, J.C., Toro-Quijano, M.I., Weber-Scharff, M., 2022. Alluvial soils as paleoenvironmental indicator in fluvial environments: A case study from Colombia. Soil Science Annual 73(3), 157400. https://doi.org/10.37501/soils....
 
35.
Marqués-Mateu, Á., Moreno-Ramón, H., Balasch, S., Ibáñez-Asensio, S., 2018. Quantifying the uncertainty of soil colour measurements with Munsell charts using a modified attribute agreement analysis. Catena 171, 44–53. https://doi.org/10.1016/j.cate....
 
36.
Matecka, P., Świtoniak, M., 2020. Delineation, characteristic and classification of soils containing carbonates in plow horizons within young moraine areas. Soil Science Annual 71, 23–36. https://doi.org/10.37501/soils....
 
37.
Moritsuka, N., Kawamura, K., Tsujimoto, Y., Rabenarivo, M., Andriamananjara, A., Rakotoson, T., Razafimbelo, T., 2019. Comparison of visual and instrumental measurements of soil color with different low-cost colorimeters. Soil Science and Plant Nutrition 65(6), 605–615. https://doi.org/10.1080/003807....
 
38.
Melville, M.D., Atkinson, G., 1985. Soil colour: its measurement and its designation in models of uniform colour space. Journal of Soil Science 36(4), 495–512.
 
39.
Mendyk, Ł., Hulisz, P., Świtoniak, M., Kalisz, B., Spychalski, W., 2020. Human activity in the surroundings of a former mill pond (Turznice, N Poland): implications for soil classification and environmental hazard assessment. Soil Science Annual 71, 371–381. https://doi.org/10.37501/soils....
 
40.
Miechówka, A., Zadrożny, P., Mazurek, R., Ciarkowska, K., 2021. Classification of mountain non-forest soils with umbric horizon–a case study from the Tatra Mountains (Poland). Soil Science Annual 72(1), 134619. https://doi.org/10.37501/soils....
 
41.
Munsell Soil Color Charts, 2009. Munsell Soil Color Charts with genuine Munsell color chips. 2009 Year Revised, 2013 Production. Produced by Munsell Color X-Rite, Grand Rapids, Mi, USA.
 
42.
Polish Soil Classification, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Wrocław–Warszawa.
 
43.
Przewoźna, B., 2012. Transformations of soils as an effect of anthropogenic denudation interpreted on the base of agricultural map of soils, ortophotomaps and terrain research. Prace Komisji Krajobrazu Kulturowego, Polskie Towarzystwo Geograficzne 16, 148–156.
 
44.
Repe, B., 2020. Classification of soils in Slovenia. Soil Science Annual 71, 158–164. https://doi.org/10.37501/soils....
 
45.
Repe, B., Pristovsek, A., 2022. Marine tidal /subaqueous soil sequence at the coast of Slovenia. [In:] Świtoniak, M., Charzyński, P. (Eds.), Soil Sequences Atlas V. Uniwersytet Mikołaja Kopernika, Toruń, Poland, 135–154.
 
46.
Rossel, R.V., Minasny, B., Roudier, P., McBratney, A.B., 2006. Colour space models for soil science. Geoderma 133(3-4), 320–337. https://doi.org/10.1016/j.geod....
 
47.
Sánchez-Marañón, M., Huertas, R., Melgosa, M., 2005. Colour variation in standard soil-colour charts. Soil Research 43(7), 827-837. https://doi.org/10.1071/SR0416....
 
48.
dos Santos, H.D., Jacomine, P.T., Dos Anjos, L.H.C., De Oliveira, V.Á., Lumbreras, J.F., Coelho, M.R., Cunha, T J.F., 2018. Brazilian Soil Classification System. EMBRAPA, Brasilia, Brazil.
 
49.
Satoh, C., 1998. Change in color perception with aging. Journal of Light and Visual Environment 22(2), 50.
 
50.
Schad, P., 2023. World Reference Base for Soil Resources—Its fourth edition and its history. Journal of Plant Nutrition and Soil Science 186, 151–163. https://doi.org/10.1002/jpln.2....
 
51.
Simonson, R.W., 1993. Soil color standards and terms for field use—history of their development. [In:] Bigham, J. M., Ciolkosz, E.J., (Eds.), Soil Color, SSSA Spec. Publ., vol. 31, SSSA, Madison, WI, 1–20.
 
52.
Soil Survey Staff, 2022. Keys to Soil Taxonomy, 13th edition. USDA Natural Resources Conservation Service.
 
53.
Świtoniak, M., 2014. Use of soil profile truncation to estimate influence of accelerated erosion on soil cover transformation in young morainic landscapes, North-Eastern Poland. Catena 116, 173–184. https://doi.org/10.1016/j.cate....
 
54.
Świtoniak, M., Kabała, C., Charzyński, P., Capra, G.F., Czigány, S., Pulido-Fernández, M., Vircava, I., 2022. Illustrated Handbook of WRB Soil Classification. Wroclaw, Poland.
 
55.
Volungevicius, J., Jukna, L., Veteikis, D., Vaisvalavicius, R., Amaleviciute, K., Slepetiene, A., Jankauskaite, M., 2016. The problem of soil interpretation according to the WRB 2014 classification system in the context of anthropogenic transformations. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science 66(5), 452–460. https://doi.org/10.1080/090647....
 
56.
Wakwoya, M.B., Woldeyohannis, W.H., Yimamu, F.K., 2023. Characterization and classification of soils of upper Hoha sub-watershed in Assosa District, Western Ethiopia. Heliyon 9, e14866. https://doi.org/10.1016/j.heli....
 
57.
Woronko, B., Zagórski, Z., Cyglicki, M., 2022. Soil-development differentiation across a glacial–interglacial cycle, Saalian upland, E Poland. Catena 211, 105968. https://doi.org/10.1016/j.cate....
 
58.
Zádorová, T., Žížala, D., Penížek, V., Vaněk, A., 2020. Harmonisation of a large-scale historical database with the actual Czech soil classification system. Soil and Water Research 15(2), 101–115.
 
59.
Zhang, Y., Hartemink, A. E., 2019. Digital mapping of a soil profile. European Journal of Soil Science 70(1), 27–41.
 
60.
Žížala, D., Juřicová, A., Zádorová, T., Zelenková, K., Minařík, R., 2019. Mapping soil degradation using remote sensing data and ancillary data: South-East Moravia, Czech Republic. European Journal of Remote Sensing 52, S1: 108–122. https://doi.org/10.1080/227972....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top