PL EN
PRACA ORYGINALNA
Analysis of the feasibility of using fertilizers based on fulvic acids in bioremediation of contaminated soil
 
Więcej
Ukryj
1
Department of Ecology and Environmental Technologies, Admiral Makarov National University of Shipbuilding, 54007, Heroiv Ukrainy avе., 9, Mykolaiv, Ukraine, Ukraine
 
Zaznaczeni autorzy mieli równy wkład w przygotowanie tego artykułu
 
 
Data nadesłania: 08-06-2024
 
 
Data ostatniej rewizji: 29-09-2024
 
 
Data akceptacji: 11-11-2024
 
 
Data publikacji online: 11-11-2024
 
 
Data publikacji: 22-11-2024
 
 
Autor do korespondencji
Vladyslav Nedoroda   

Department of Ecology and Environmental Technologies, Admiral Makarov National University of Shipbuilding, 54007, Heroiv Ukrainy avе., 9, Mykolaiv, Ukraine, Mykolaiv, Ukraine
 
 
Soil Sci. Ann., 2024, 75(4)195814
 
SŁOWA KLUCZOWE
STRESZCZENIE
The use of bioremediation techniques makes it possible to restore the ecological functions of oil-contaminated soils, reduce the concentration of biologically available petroleum compounds, and prevent the spread of pollutants through erosion or groundwater. Enhancing bioremediation helps to accelerate the processes of oil destruction, improve soil structure, and increase the number and metabolic activity of microorganisms. The aim of this article is to outline the results of the study of the phytotoxicity of soil with a high level of oil pollution under the combined impact of fulvic acids and microorganisms. During the experiments, artificially polluted samples of soil were exposed to an oil-oxidizing consortium based on strains of Bacillus amyloliquefaciens and Bacillus subtilis. The main goal was to determine the effect of fertilizers on the efficiency of microbiological destruction in the root zone of plants. The additional aim was to evaluate the effectiveness of biosurfactant in conjunction with organic fertilizers, those able to enhance plant growth and their development in contaminated soil by inducing growth on its own and lowering soil phytotoxicity through pollutant degradation. Utilizing Sinapis arvensis as a bioindicator, bioassay was used to assess the overall feasibility. The analysis of the phytotoxicity of soil samples shows a resulting decrease of 21.46–33.76%, depending on both pollutant and fulvic acid concentrations.
REFERENCJE (41)
1.
Ablieieva, I., Plyatsuk, L., Roi, I., Chekh, O., Gabbassova, S., Zaitseva, K., Lutsenko, S., 2021. Study of the oil geopermeation patterns: a case study of ANSYS CFX software application for computer modeling. Journal of Environmental Management 287, 112347. https://doi.org/10.1016/j.jenv....
 
2.
Alarcón., A., Fred, T., Davies., Robin, L., Autenrieth., David, A., Zuberer., 2008. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. International Journal of Phytoremediation 10(4), 251–263. https://doi.org/10.1080/152265....
 
3.
Alister, C., Araya, M., Cordova, A., Saavedra T., Kogan, M., 2020. Humic Substances and their Relation to Pesticide Sorption in Eight Volcanic Soils. Planta Daninha 38. https://doi.org/10.1590/s0100-....
 
4.
Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., Vivanco, J.M., 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57, 233–266. https://doi.org/10.1146/annure....
 
5.
Bravin, M.N., Michaud, A.M., Larabi, B., Hinsinger, P., 2010. RHIZOtest: A plant-based biotest to account for rhizosphere processes when assessing copper bioavailability. Environmental Pollution 158(10), 3330–3337. https://doi.org/10.1016/j.envp....
 
6.
Carolin, C. F., Kumar, P.S., Boobalan, C., Fetcia Jackulin, C., Ramamurthy, R., 2021. Stimulation of Bacillus sp. by lipopeptide biosurfactant for the degradation of aromatic amine 4-Chloroaniline. Journal of Hazardous Materials 415. https://doi.org/10.1016/j.jhaz....
 
7.
Cherniak, L., Maniecki, T., Tykhenko, O., Proskurnia, О., Dmytrukha, T., 2023. Comparison of the efficiency of phytoremediation of soil contaminated with different types of oil products. Science Rise 3, 10–17. https://doi.org/10.21303/2313-....
 
8.
Cherniak. L., Mikhyeyev. O., Lapan, O., Dmytrukha, T., Yaremchuk, L., 2022. Analysis of the efficiency of using the phytoremediation method for the restoration of oil-contaminated soil. VIsnik KrNU ImenI Mihayla Ostrogradskogo 5, 19–26. https://doi.org/10.32782/1995-... (in Ukrainian).
 
9.
Ćwieląg-Piasecka, I., Medyńska-Juraszek, A., Jerzykiewicz, M., Dębicka, M., Bekier, J., Jamroz, E., Kawałko, D., 2018. Humic acid and biochar as specific sorbents of pesticides. Journal of Soils and Sediments 18, 2692–2702. https://doi.org/10.1007/s11368....
 
10.
Da Rosa, C.F.C., Freire, D.M.G., Ferraz, H.C., 2015. Biosurfactant microfoam: Application in the removal of pollutants from soil. Journal of Environmental Chemical Engineering 3(1), 89–94. https://doi.org/10.1016/j.jece....
 
11.
Das, N., Chandran, P., 2011. Microbial degradation of petroleum hydrocarbon contaminants: an overview. SAGE Hindawi access to research Biotechnology Research International, 1–13.
 
12.
Darmayati, Y., Afianti N.F, 2018. Impact of slow release fertilizers on enhancing biodegradation in oil contaminated tropical sandy beach. AIP Conference Proceedings 2049(1), 020076. https://doi.org/10.1063/1.5082....
 
13.
Dobrochaeva, D. N., Kotova, M.I., 1987. Identifier of higher plants of Ukraine. (Viznachnik vischih roslin Ukrayini). Kiev: Naukova dumka, 548 s.
 
14.
Egamberdieva, D., Wirth, S., Alqarawi, A.A., Abd_Allah, E.F., Hashem, A., 2017. Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Frontiers in Microbiology 8, 1–14. https://doi.org/10.3389/fmicb.....
 
15.
Germida, J.J., Frick, C.M., Farrell, R.E., 2002. Phytoremediation of oil-contaminated soils. Developments in soil science 28, 169–186. https://doi.org/10.1016/S0166-....
 
16.
Goranov, A., Tadini, A., Martin-Neto, L., Bernardi, A.C.C., Oliveira, P.P.A., Pezzopane, J.R.M., Milori, D.M.B.P., Mounier, S., Hatcher, P.G., 2022. Comparison of Sample Preparation Techniques for the (-)ESI-FT-ICR-MS Analysis of Humic and Fulvic Acids. Environmental Science and Technology 56(17), 12688–12701. https://doi.org/10.1021/acs.es....
 
17.
Hinchman, R., Negri, M.C., Gatliff, E., 1996. In Phyto-remediation: using green plants to clean up contaminated soil, groundwater and wastewater. International Topical Meeting on Nuclear and Hazardous Waste Management, Spectrum 23, 18–23. Archival Resource Key: ark:/67531/metadc665169.
 
18.
Hrytsak, R.L., 2017. Bioindication methods for the needs of systematic analysis of environmental quality. Ternopil: Geography 2, 153–165. (in Ukrainian).
 
19.
Liu, P.W.G., Chang, T.C., Whang, L.M., Kao, C.H., Pan, P.S., Cheng, S.S., 2011. Bioremediation of petroleum hydrocarbon contaminated soil: Effects of strategies and microbial community shift. International Biodeterioration & Biodegradation 65, 1119–1127. https://doi.org/10.1016/j.ibio....
 
20.
LUFA Speyer, 2024. Chemical and physical characteristics of standard soils according to GLP, from https://www.lufa-speyer.de/ima....
 
21.
Mekonnen, B.A., Aragaw, T.A., Genet, M.B., 2024. Bioremediation of petroleum hydrocarbon contaminated soil: A review on principles, degradation mechanisms, and advancements. Frontiers in Environmental Science 12, 1–21.
 
22.
Nedoroda, V., Trokhymenko, G., Khrapko, T., Koliehova, A., 2021. Analysis of Petroleum Biodegradation by a Bacterial Consortium of Bacillus amyloliquefaciens ssp. plantarum and Bacillus subtilis. Journal of Ecological Engineering 22(11), 36–42. https://doi.org/10.12911/22998....
 
23.
Nedoroda, V., Trokhymenko, G., Magas, N., 2022. Bioremediation Possibilities of Oil-Contaminated Soil by Biosurfactant Based on Bacillus Strain. Journal of Ecological Engineering 23(8), 49–55. https://doi.org/10.12911/22998....
 
24.
Ossai, I.C., Ahmed, A., Hassan, A., 2019. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology & Innovation 17, 38–45. https://doi.org/10.1016/j.eti.....
 
25.
Pan, Y., Kang, P., Tan, M., Hu, J., Zhang, Y., Zhang, J., Song, N., Li, X., 2022. Root exudates and rhizosphere soil bacterial relationships of Nitraria tangutorum are linked to k-strategists bacterial community under salt stress. Frontiers in Plant Science 13, 997292. https://doi.org/10.3389/fpls.2....
 
26.
Park, S., Kim, K.S., Kim, J.-T., Kang, D., Sung, K., 2011. Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals. Journal of Environmental Sciences-china 23(12), 2034–2041. https://doi.org/10.1016/S1001-....
 
27.
Rafique, H.M., Khan, M.Y., Asghar, H.N., Ahmad Zahir, Z., Nadeem, S.M., Sohaib, M., Alotaibi, F., Al-Barakah, F.N., 2023. Converging alfalfa (Medicago sativa L.) and petroleum hydrocarbon acclimated ACC-deaminase containing bacteria for phytoremediation of petroleum hydrocarbon contaminated soil. International Journal of Phytorem 25, 717–727. https://doi.org/10.1080/152265....
 
28.
Ricci, M., Tilbury, L., Daridon, B., Sukalac, K., 2019. General Principles to Justify Plant Biostimulant Claims. Frontiers in Plant Science 10, 1–8, 494. https://doi.org/10.3389/fpls.2....
 
29.
Shi, Q., Kaur, P., Gan, J., 2023. Harnessing the potential of phytoremediation for mitigating the risk of emerging contaminants. Current Opinion in Environmental Science & Health 32, 100448. https://doi.org/10.1016/j.coes....
 
30.
Sinha, B., Roy, S., Kumar, K., 2020. Bioremediation of oily sludge: A case base analysis to supply chain. Resources, Environment and Sustainability 2, 225–233. https://doi.org/10.1016/j.rese....
 
31.
Sivkov, Y. V., Nikiforov, A. S., 2021. Study of Oil-Contaminated Soils Phytotoxicity During Bioremediation Activities. Journal of Ecological Engineering 22(3), 67-72. https://doi.org/10.12911/22998....
 
32.
Smirnova, T.S., Cheloznova, K.V., Galkina, A.A., 2020. The use of Enchytraeid worms in biodiagnostics of urban soil conditions. Ecological systems and devices 2, 15–22.
 
33.
Stanojevic, A.B., Vrvić, M., Száková, J., Miletić, S., 2023. Evaluation of the ex-situ bioremediation of the petroleum hydrocarbons contaminated soil. Bioremediation Journal, 1–11. https://doi.org/10.1080/108898....
 
34.
Steinauer, K., Chatzinotas, A., Eisenhauer, N., 2016. Root exudate cocktails: The link between plant diversity and soil microorganisms? Ecology and Evolution 6, 7387–7396. https://doi.org/10.1002/ece3.2....
 
35.
Sumiahadi, A., Acar, R., 2018. A review of phytoremediation technology: heavy metals uptake by plants. IOP Conference Series: Earth and Environmental Science 142, 012023. https://doi.org/10.1088/1755-1....
 
36.
Surriya, O., Saleem, S., Waqar, K., Gul, A., 2015. Phytoremediation of Soils: Prospects and Challenges. Soil Remediation and Plants. Academic Press, 1–36. https://doi.org/10.1016/B978-0....
 
37.
Tonelli, F.C.P., Tonelli, F.M.P., Lemos, M.S., de Melo Nunes, N.A., 2022. Mechanisms of phytoremediation. In Phytoremediation. Academic Press, 37–64. https://doi.org/10.1016/B978-0....
 
38.
Volkogon, V.V., Nadkernychna, O.V., Tokmakova, L.M., 2010. Experimental soil microbiology: monograph; under the editorship of Volkogon V.V. Kyiv: Agrarian Science, 464. (in Ukrainian with English abstract).
 
39.
Yateem, A., Balba, M., El‐Nawawy A., Al‐Awadhi. N., 2008. Plants-associated microflora and the remediation of oil contaminated soil. International Journal of Phytoremediation 2(3), 183–191. https://doi.org/10.1080/152265....
 
40.
Zhang, P., Zhang, H., Wu, G., Chen X., 2021. Dose-Dependent Application of Straw-Derived Fulvic Acid on Yield and Quality of Tomato Plants Grown in a Greenhouse. Frontiers in Plant Science 12, 1–12. https://doi.org/10.3389/fpls.2....
 
41.
Zhao, M., Zhao, J., Yuan, J., Hale, L., Wen, T., Huang, Q., Vivanco, J.M., Zhou, J., Kowalchuk, G.A., Shen, Q., 2021. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth. Plant, Cell & Environment 44(2), 613–628. https://doi.org/10.1111/pce.13....
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top