PL EN
ORIGINAL PAPER
Diagnosis of the trophism of rusty soils on the basis of soil trophic index in selected coniferous stands in the Rupin forestry in the Kurpie Plain, NE Poland
 
More details
Hide details
1
Katedra Gleboznawstwa i Mikrobiologii, Uniwersytet Warmińsko-Mazurski w Olsztynie, Polska
 
 
Submission date: 2021-07-13
 
 
Final revision date: 2021-12-09
 
 
Acceptance date: 2021-12-11
 
 
Online publication date: 2021-12-31
 
 
Publication date: 2021-12-31
 
 
Corresponding author
Sławomir Smólczyński   

Katedra Gleboznawstwa i Mikrobiologii, Uniwersytet Warmińsko-Mazurski w Olsztynie, Plac Łódzki 3, 10-727, Olsztyn, Polska
 
 
Soil Sci. Ann., 2021, 72(4)144786
 
KEYWORDS
ABSTRACT
Abstract: The aim of the study was to compare the trophism determined on the basis of soil trophic index (SIG) of rusty soils in coniferous stands and afforested post agricultural rusty soil in the Rupin forestry. The research was carried out in the mesoregion of Kurpie Plain. The studied soils were classified as podzolic rusty soils and gleyic rusty soil. They were formed from glaciofluvial sands (sand or loamy sand) containing from 0% to 4% of clay (<0.002 mm) and from 2% to 17% of silt (0.05–0.002 mm). The pH (KCl) values of 3.9–4.2 were the lowest in the humus horizons and increased to 4.8–5.0 in the parent material, which may indicate progressive acidification. The highest content of exchangeable hydrogen in surface horizons confirms the occurrence of this process. The organic carbon content in humus horizons amounted to 13.23–16.41 g kg-1, and total nitrogen to 0.83–1.34 g kg-1. The organic carbon to total nitrogen ratio was the narrowest in the post-agricultural Gleyic rusty soil (12–13), while in the Podzolic rusty soils it was wider and ranged from 15 to 18. Among the exchangeable cations, hydrogen dominated in the cation exchange capacity, and among the basic exchangeable cations calcium cation prevailed. The base saturation in Podzolic rusty soils ranged from 16.0 to 29.8%, while in the post-agricultural Gleyic rusty soil it was the highest and was increasing down the soil profile from 35.3 to 57.1%. Cation exchange capacity was positively correlated with H+ and negatively with pH values. The numerical values of the SIG index in Podzolic rusty soils ranged from 16 to 19, which indicates oligotrophic habitats of mixed coniferous stands. The SIG index in the post-agricultural Gleyic rusty soil reached the value of 27, which indicates mesotrophic habitats of mixed broadleaved forests. The SIG values indicated a higher soil trophism than the diagnosis of the habitat trophism on the basis of the Soil and Habitats Survey – Parciaki Forest District.
 
REFERENCES (37)
1.
Baćmaga, M., Wyszkowska, J., Borowik, A., Kucharski, J., Paprocki, Ł., 2021. Microbiological and biochemical properties in Eutric/Dystric Brunic Arenosols, Eutric/Endocalcaric Cambisols, and Haplic/Albic Luvisols Soils. Journal of Soil Science and Plant Nutrition 21, 1277–1292. https://doi.org/10.1007/s42729....
 
2.
Bednarek, R., 1991. Age, genesis and systematic position of rusty soils in the light of palaeopedological research in the vicinity of Osja. UMK, Toruń.
 
3.
Białousz, S., 1978. The influence of morphogenesis of Mazurian Lakeland on the development of soils. Wpływ morfogenezy Pojezierza Mazurskiego na kształtowanie się gleb. Rocz. Nauk Rol., D-166, 87–126.
 
4.
Biały, K., 1999. Optionality in discrimination of forest site types and planning final species compositions in stand on podzolic soils. Sylwan 143 (5), 65–72.
 
5.
Bieniek, A., 2013. Soils of inner outwash in the North-Eastern Poland. Rozprawy i monografie 184. Wydawnictwo UWM w Olsztynie.
 
6.
Brożek, S., 2007. Classification of forest habitats - comments on the position of soils in the principles of diagnosis. Sylwan 151 (2), 19−25.
 
7.
Brożek, S., Zwydak, M., Lasota, J., 2008. Numerical index of trophic varieties of podzolic and rusty soils. Roczniki Gleboznawcze – Soil Science Annual 59(1), 1–17.
 
8.
Brożek, S., Zwydak, M., Lasota, J., Różanski, W., 2011. Methodical approach to research on the relations between plant communities and soil in forests. Roczniki Gleboznawcze – Soil Science Annual 62 (4), 16−38.
 
9.
Chojnicki, J., 2020. Evaluation of the trophism of soils in the ‘Rybitew' strict protection area in the Kampinos National Park based on the soil trophic index. Sylwan 164 (9), 758−766. https://doi.org/10.26202/sylwa....
 
10.
Chojnicki, J., Kwasowski, W., Wójcik, R., 2021a. Assessment of the function and destination of the Soil Model Area in the Puszcza Biała depending on the typology and properties of soils. Sylwan 165 (3), 223−232. https://doi.org/10.26202/sylwa....
 
11.
Chojnicki, J., Kwasowski, W., Zielony, R., 2021b. Assessment of the function and destination of the Soil Model Area in the Puszcza Biała Forest depending on the diagnosis of forest site. Sylwan 165 (4), 296−304, https://doi.org/10.26202/sylwa....
 
12.
Classification of forest soils in Poland. 2000. CILP, Warszawa.
 
13.
Forest Equipment Plan. Parciaki Forest District. 2012. Wydawnictwo Biuro Urządzania Lasu i Geodezji Leśnej Oddział w Olsztynie, Olsztyn.
 
14.
Forest management instructions. 2012. Part II. Instructions for distinguishing and mapping forest habitat types and plant communities in the State Forests. CILP, Warszawa.
 
15.
Gawęda, T., Błońska, E., Małek, S., Bijak, S., Zasada, M., 2018. Application of ITGL in the assessment of post−agricultural soils with natural regeneration of silver birch. Sylwan 162 (5), 396−402. https://doi.org/10.26202/sylwa....
 
16.
Jankowski, M., 2014. Podzolization as a secondary process in the rusty soils of the Brodnica Landscape Park. [In:] Świtoniak, M., Jankowski, M., Bednarek, R. (Eds.), Anthropogenic transformations of the soil cover of the Brodnica Landscape Park. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika. Toruń, 9−24.
 
17.
Janowska, E., 2001. Origin and properties of rusty soils in the area of the central polish glaciation. Wydawnictwo SGGW Warszawa.
 
18.
Lasota, J., Brożek, S., Zwydak, M., 2011a. Application of the trophic soil index in planning the composition of renewed forest stands. Roczniki Gleboznawcze – Soil Science Annual 62(4), 150−162.
 
19.
Lasota, J., Zwydak, M., Wanic, T., Brożek, S., 2011b. Soil diversity of mixed coniferous forest communities. Roczniki Gleboznawcze – Soil Science Annual 62(4), 54−72. (in Polish with English abstract).
 
20.
Łabaz, B., Kabała, C., Bogacz, A., 2016. Problems of trophic status diagnosis in the forest habitats on former arable alluvial soils. Sylwan 160 (8), 684−695. https://doi.org/10.26202/sylwa....
 
21.
Łachacz, A., 2001. Origin and properties of shallow organogenic soils of the Mazury and Kurpie outwash plain. Wydawnictwo UWM w Olsztynie.
 
22.
Marks, L., 1990. Outline of the geological structure of the evolution of the north-western part of the Kurpie outwash plain. Kwartalnik Geologiczny 34(3), 489−502.
 
23.
Marzec, M., Kabała, C., 2008. Brunic regosols and dystric cambisols developed of granite regolithes in the sudety mountains - morphology, properties and classification. Roczniki Gleboznawcze – Soil Science Annual 59(3/4), 195−205. (in Polish with English abstract).
 
24.
Oktaba, L., Kondras, M., 2015. Organic matter transformation in meadow soils during the first years after afforestation. Sylwan 159 (2), 126−134. https://doi.org/10.26202/sylwa....
 
25.
Oyama, M., Takehara, M., 1992. Revised standard Munsell soil color charts. Tokio.
 
26.
Particle size distribution and textural classes of soils and mineral materials - classification of Polish Society of Soil Science 2008. Roczniki Gleboznawcze – Soil Science Annual 60(2), 5–16.
 
27.
Polish Soil Classification (Systematyka Gleb Polski), 2019. Soil Science Society of Poland, Commission on Soil Genesis, Classification and Cartography. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław –Warszawa.
 
28.
Sewerniak, P., Sylwestrzak, K., Bednarek, R., Gonet, S., 2014. Post-agricultural soils in forests. [In:] Świtoniak, M., Jankowski, M., Bednarek, R. (Eds.), Anthropogenic transformations of the soil cover of the Brodnica Landscape Park. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika. Toruń, 44−56.
 
29.
Sewerniak, P., 2016. Impact of land relief on site index and growth parameters of Scots pine stands on inland dunes in the Toruń Basin. Wpływ rzeźby terenu na bonitację i cechy wzrostowe drzewostanów sosnowych na wydmach Kotliny Toruńskiej. Sylwan 160 (8), 647−655,.
 
30.
Sewerniak, P., 2020. Plant species richness or soil fertility: which affects more the productivity of Scots pine in Central Europe? Annals of Forest Research 63(2), 57-73. https://doi.org/10.15287/afr.2....
 
31.
Soil and Habitats Survey - Parciaki Forest District. 2010. Wydawnictwo Biuro Urządzania Lasu i Geodezji Leśnej, Gdynia.
 
32.
Szafranek, A., 1989. The effect of the area relief and the parent rock on formation of soils developed from Devonian and Triassic sandstones of the Świętokrzyski region. Roczniki Gleboznawcze–Soil Science Annual 40(2), 59−81. (in Polish with English abstract).
 
33.
Uggla, Z., 1980. A study of the soils of plant communities in pine forests of Olsztyn Lakeland. Zeszyty Naukowe Akademii Rolniczo-Technicznej w Olsztynie 9, 3−68.
 
34.
Uggla, H., 1986. Soil studies in Division 165 of the Browsk Forest District in the Białowieża Primeval Forest. Acta Academiae Agriculturae ac Technicae Olstenensis 287, Geodaesia et Ruris Regulatio 16, 13−30.
 
35.
Uggla, H., Ferczyńska, Z., 1969. Soil relations in a catena of „Kudypy” coniferous habitat. Stosunki glebowe w katenie siedlisk borowych „Kudypy”. Zeszyty Naukowe Wyższej Szkoły Rolniczej w Olsztynie 25(709), 719−737.
 
36.
Uggla, H., Roszko, H., 1974. Preliminary studies on rusty soils (ochric soils) in coniferous forests in the Szczytno district. Sylwan 10, 25−35.
 
37.
Wanic, T., Błońska E. 2011. Zastosowanie metody SIG w ocenie przydatności terenów porolnych do hodowli lasu. Roczniki Gleboznawcze – Soil Science Annual 62(4), 173−181.
 
eISSN:2300-4975
ISSN:2300-4967
Journals System - logo
Scroll to top